Пример #1
0
        // Q-Learning thread
        private void QLearningThread()
        {
            int iteration = 0;
            // current coordinates of the agent
            int agentCurrentX, agentCurrentY;
            // exploration policy
            TabuSearchExploration    tabuPolicy        = (TabuSearchExploration)qLearning.ExplorationPolicy;
            EpsilonGreedyExploration explorationPolicy = (EpsilonGreedyExploration)tabuPolicy.BasePolicy;

            // loop
            while ((!needToStop) && (iteration < learningIterations))
            {
                // set exploration rate for this iteration
                explorationPolicy.Epsilon = explorationRate - ((double)iteration / learningIterations) * explorationRate;
                // set learning rate for this iteration
                qLearning.LearningRate = learningRate - ((double)iteration / learningIterations) * learningRate;
                // clear tabu list
                tabuPolicy.ResetTabuList();

                // reset agent's coordinates to the starting position
                agentCurrentX = agentStartX;
                agentCurrentY = agentStartY;

                // steps performed by agent to get to the goal
                int steps = 0;

                while ((!needToStop) && ((agentCurrentX != agentStopX) || (agentCurrentY != agentStopY)))
                {
                    steps++;
                    // get agent's current state
                    int currentState = GetStateNumber(agentCurrentX, agentCurrentY);
                    // get the action for this state
                    int action = qLearning.GetAction(currentState);
                    // update agent's current position and get his reward
                    double reward = UpdateAgentPosition(ref agentCurrentX, ref agentCurrentY, action);
                    // get agent's next state
                    int nextState = GetStateNumber(agentCurrentX, agentCurrentY);
                    // do learning of the agent - update his Q-function
                    qLearning.UpdateState(currentState, action, reward, nextState);

                    // set tabu action
                    tabuPolicy.SetTabuAction((action + 2) % 4, 1);
                }

                System.Diagnostics.Debug.WriteLine(steps);

                iteration++;

                // show current iteration
                SetText(iterationBox, iteration.ToString());
            }

            // enable settings controls
            EnableControls(true);
        }
Пример #2
0
    // Q-Learning thread
    private void QLearningThread()
    {
        _currentIteration = 0;

        // exploration policy
        TabuSearchExploration    tabuPolicy        = (TabuSearchExploration)_qLearning.ExplorationPolicy;
        EpsilonGreedyExploration explorationPolicy = (EpsilonGreedyExploration)tabuPolicy.BasePolicy;

        // loop
        while ((!_needToStop) && (_currentIteration < learningIterations))
        {
            // set exploration rate for this iteration
            explorationPolicy.Epsilon = explorationRate - ((double)_currentIteration / learningIterations) * explorationRate;
            // set learning rate for this iteration
            _qLearning.LearningRate = learningRate - ((double)_currentIteration / learningIterations) * learningRate;
            // clear tabu list
            tabuPolicy.ResetTabuList();

            // reset agent's coordinates to the starting position
            _agentCurrX = _agentStartX;
            _agentCurrY = _agentStartY;

            // steps performed by agent to get to the goal
            int steps = 0;

            while ((!_needToStop) && ((_agentCurrX != _agentStopX) || (_agentCurrY != _agentStopY)))
            {
                steps++;
                // get agent's current state
                int currentState = GetStateNumber(_agentCurrX, _agentCurrY);
                // get the action for this state
                int action = _qLearning.GetAction(currentState);
                // update agent's current position and get his reward
                double reward = UpdateAgentPosition(action);
                // get agent's next state
                int nextState = GetStateNumber(_agentCurrX, _agentCurrY);
                // do learning of the agent - update his Q-function
                _qLearning.UpdateState(currentState, action, reward, nextState);

                // set tabu action
                tabuPolicy.SetTabuAction((action + 2) % 4, 1);
            }

            _currentIteration++;
            Debug.Log(string.Format("{0} steps needed for iteration {1}.", steps, _currentIteration));
        }

        _enableControls = true;
        Debug.Log("QLearning training finished. Try to execute the solution.");
    }
Пример #3
0
        // Q-Learning thread
        private void QLearningThread()
        {
            int iteration = 0;
            TabuSearchExploration    tabuPolicy        = (TabuSearchExploration)qLearning.ExplorationPolicy;
            EpsilonGreedyExploration explorationPolicy = (EpsilonGreedyExploration)tabuPolicy.BasePolicy;

            while ((!needToStop) && (iteration < learningIterations))
            {
                explorationPolicy.Epsilon = explorationRate - ((double)iteration / learningIterations) * explorationRate;
                qLearning.LearningRate    = learningRate - ((double)iteration / learningIterations) * learningRate;
                tabuPolicy.ResetTabuList();

                var agentCurrentX = agentStartX;
                var agentCurrentY = agentStartY;

                int steps = 0;
                while ((!needToStop) && ((agentCurrentX != agentStopX) || (agentCurrentY != agentStopY)))
                {
                    steps++;
                    int    currentState = GetStateNumber(agentCurrentX, agentCurrentY);
                    int    action       = qLearning.GetAction(currentState);
                    double reward       = UpdateAgentPosition(ref agentCurrentX, ref agentCurrentY, action);
                    int    nextState    = GetStateNumber(agentCurrentX, agentCurrentY);

                    // do learning of the agent - update his Q-function, set Tabu action
                    qLearning.UpdateState(currentState, action, reward, nextState);
                    tabuPolicy.SetTabuAction((action + 2) % 4, 1);
                }

                System.Diagnostics.Debug.WriteLine(steps);
                iteration++;

                SetText(iterationBox, iteration.ToString());
            }

            EnableControls(true);
        }
Пример #4
0
 /// <summary>
 /// Updates Q table based on the calculated reward
 /// </summary>
 /// <param name="previousState">state number of previous state</param>
 /// <param name="action">number of action that was taken</param>
 /// <param name="reward">reward given</param>
 /// <param name="nextState">number of the next state</param>
 public void UpdateQTable(int previousState, int action, double reward, int nextState)
 {
     qLearning.UpdateState(previousState, action, reward, nextState);
 }
Пример #5
0
        public void learn_test()
        {
            #region doc_main
            // Fix the random number generator
            Accord.Math.Random.Generator.Seed = 0;

            // In this example, we will be using the QLearning algorithm
            // to make a robot learn how to navigate a map. The map is
            // shown below, where a 1 denotes a wall and 0 denotes areas
            // where the robot can navigate:
            //
            int[,] map =
            {
                { 1, 1, 1, 1, 1, 1, 1, 1, 1 },
                { 1, 1, 0, 0, 0, 0, 0, 0, 1 },
                { 1, 1, 0, 0, 0, 1, 1, 0, 1 },
                { 1, 0, 0, 1, 0, 0, 0, 0, 1 },
                { 1, 0, 0, 1, 1, 1, 1, 0, 1 },
                { 1, 0, 0, 1, 1, 0, 0, 0, 1 },
                { 1, 1, 0, 1, 0, 0, 0, 0, 1 },
                { 1, 1, 0, 1, 0, 1, 1, 0, 1 },
                { 1, 1, 1, 1, 1, 1, 1, 1, 1 },
            };

            // Now, we define the initial and target points from which the
            // robot will be spawn and where it should go, respectively:
            int agentStartX = 1;
            int agentStartY = 4;

            int agentStopX = 7;
            int agentStopY = 4;

            // The robot is able to sense the environment though 8 sensors
            // that capture whether the robot is near a wall or not. Based
            // on the robot's current location, the sensors will return an
            // integer number representing which sensors have detected walls

            Func <int, int, int> getState = (int x, int y) =>
            {
                int c1 = (map[y - 1, x - 1] != 0) ? 1 : 0;
                int c2 = (map[y - 1, x + 0] != 0) ? 1 : 0;
                int c3 = (map[y - 1, x + 1] != 0) ? 1 : 0;
                int c4 = (map[y + 0, x + 1] != 0) ? 1 : 0;
                int c5 = (map[y + 1, x + 1] != 0) ? 1 : 0;
                int c6 = (map[y + 1, x + 0] != 0) ? 1 : 0;
                int c7 = (map[y + 1, x - 1] != 0) ? 1 : 0;
                int c8 = (map[y + 0, x - 1] != 0) ? 1 : 0;

                return(c1 | (c2 << 1) | (c3 << 2) | (c4 << 3) | (c5 << 4) | (c6 << 5) | (c7 << 6) | (c8 << 7));
            };

            // The actions are the possible directions the robot can go:
            //
            //   - case 0: go to north (up)
            //   - case 1: go to east (right)
            //   - case 2: go to south (down)
            //   - case 3: go to west (left)
            //

            int    learningIterations = 1000;
            double explorationRate    = 0.5;
            double learningRate       = 0.5;

            double moveReward = 0;
            double wallReward = -1;
            double goalReward = 1;

            // The function below specifies how the robot should perform an action given its
            // current position and an action number. This will cause the robot to update its
            // current X and Y locations given the direction (above) it was instructed to go:
            Func <int, int, int, Tuple <double, int, int> > doAction = (int currentX, int currentY, int action) =>
            {
                // default reward is equal to moving reward
                double reward = moveReward;

                // moving direction
                int dx = 0, dy = 0;

                switch (action)
                {
                case 0:             // go to north (up)
                    dy = -1;
                    break;

                case 1:             // go to east (right)
                    dx = 1;
                    break;

                case 2:             // go to south (down)
                    dy = 1;
                    break;

                case 3:             // go to west (left)
                    dx = -1;
                    break;
                }

                int newX = currentX + dx;
                int newY = currentY + dy;

                // check new agent's coordinates
                if ((map[newY, newX] != 0) || (newX < 0) || (newX >= map.Columns()) || (newY < 0) || (newY >= map.Rows()))
                {
                    // we found a wall or got outside of the world
                    reward = wallReward;
                }
                else
                {
                    currentX = newX;
                    currentY = newY;

                    // check if we found the goal
                    if ((currentX == agentStopX) && (currentY == agentStopY))
                    {
                        reward = goalReward;
                    }
                }

                return(Tuple.Create(reward, currentX, currentY));
            };


            // After defining all those functions, we create a new Sarsa algorithm:
            var explorationPolicy = new EpsilonGreedyExploration(explorationRate);
            var tabuPolicy        = new TabuSearchExploration(4, explorationPolicy);
            var qLearning         = new QLearning(256, 4, tabuPolicy);

            // curent coordinates of the agent
            int agentCurrentX = -1;
            int agentCurrentY = -1;

            bool needToStop = false;
            int  iteration  = 0;

            // loop
            while ((!needToStop) && (iteration < learningIterations))
            {
                // set exploration rate for this iteration
                explorationPolicy.Epsilon = explorationRate - ((double)iteration / learningIterations) * explorationRate;

                // set learning rate for this iteration
                qLearning.LearningRate = learningRate - ((double)iteration / learningIterations) * learningRate;

                // clear tabu list
                tabuPolicy.ResetTabuList();

                // reset agent's coordinates to the starting position
                agentCurrentX = agentStartX;
                agentCurrentY = agentStartY;

                // previous state and action
                int previousState  = getState(agentCurrentX, agentCurrentY);
                int previousAction = qLearning.GetAction(previousState);

                // update agent's current position and get his reward
                var    r      = doAction(agentCurrentX, agentCurrentY, previousAction);
                double reward = r.Item1;
                agentCurrentX = r.Item2;
                agentCurrentY = r.Item3;

                // loop
                while ((!needToStop) && (iteration < learningIterations))
                {
                    // set exploration rate for this iteration
                    explorationPolicy.Epsilon = explorationRate - ((double)iteration / learningIterations) * explorationRate;
                    // set learning rate for this iteration
                    qLearning.LearningRate = learningRate - ((double)iteration / learningIterations) * learningRate;
                    // clear tabu list
                    tabuPolicy.ResetTabuList();

                    // reset agent's coordinates to the starting position
                    agentCurrentX = agentStartX;
                    agentCurrentY = agentStartY;

                    // steps performed by agent to get to the goal
                    int steps = 0;

                    while ((!needToStop) && ((agentCurrentX != agentStopX) || (agentCurrentY != agentStopY)))
                    {
                        steps++;
                        // get agent's current state
                        int currentState = getState(agentCurrentX, agentCurrentY);

                        // get the action for this state
                        int action = qLearning.GetAction(currentState);

                        // update agent's current position and get his reward
                        r             = doAction(agentCurrentX, agentCurrentY, action);
                        reward        = r.Item1;
                        agentCurrentX = r.Item2;
                        agentCurrentY = r.Item3;

                        // get agent's next state
                        int nextState = getState(agentCurrentX, agentCurrentY);

                        // do learning of the agent - update his Q-function
                        qLearning.UpdateState(currentState, action, reward, nextState);

                        // set tabu action
                        tabuPolicy.SetTabuAction((action + 2) % 4, 1);
                    }

                    System.Diagnostics.Debug.WriteLine(steps);

                    iteration++;
                }
            }

            // The end position for the robot will be (7, 4):
            int finalPosX = agentCurrentX; // 7
            int finalPosY = agentCurrentY; // 4;
            #endregion

            Assert.AreEqual(7, finalPosX);
            Assert.AreEqual(4, finalPosY);
        }
Пример #6
0
        private void QLearningThread()
        {
            int iteration = 0;
            // 当前坐标的代理 curent coordinates of the agent
            int agentCurrentX, agentCurrentY;
            // 探索策略 exploration policy
            TabuSearchExploration    tabuPolicy        = (TabuSearchExploration)qLearning.ExplorationPolicy;
            EpsilonGreedyExploration explorationPolicy = (EpsilonGreedyExploration)tabuPolicy.BasePolicy;

            // loop
            while ((!needToStop) && (iteration < learningIterations))
            {
                OldAction.Clear();
                // 为这个迭代设置勘探速率 set exploration rate for this iteration
                explorationPolicy.Epsilon = explorationRate - ((double)iteration / learningIterations) * explorationRate;
                // 为迭代设置学习率 set learning rate for this iteration
                qLearning.LearningRate = learningRate - ((double)iteration / learningIterations) * learningRate;
                // 清除tabu列表 clear tabu list
                tabuPolicy.ResetTabuList();

                //复位代理的坐标到起始位置 reset agent's coordinates to the starting position
                agentCurrentX = _agentStartX;
                agentCurrentY = _agentStartY;

                // 代理执行的步骤以达到目标 steps performed by agent to get to the goal
                int steps = 0;

                while ((!needToStop) && ((agentCurrentX != _agentStopX) || (agentCurrentY != _agentStopY)))
                {
                    steps++;

                    // 获取代理的当前状态 get agent's current state
                    int currentState = GetStateNumber(agentCurrentX, agentCurrentY);
                    // 获取此状态的操作 get the action for this state
                    int action = qLearning.GetAction(currentState);
                    tabuPolicy.ResetTabuList();

                    // 更新代理的当前位置并得到他的奖励 update agent's current position and get his reward
                    double reward = UpdateAgentPosition(ref agentCurrentX, ref agentCurrentY, action);
                    // 获取代理的下一个状态 get agent's next state
                    int nextState = GetStateNumber(agentCurrentX, agentCurrentY);
                    // 做学习代理 - 更新他的Q函数 do learning of the agent - update his Q-function
                    qLearning.UpdateState(currentState, action, reward, nextState);
                    OldAction.Add(Tuple.Create(currentState, action, reward, nextState));

                    // 设置tabu动作 set tabu action
                    tabuPolicy.SetTabuAction((action + 2) % 4, 1);
                }
                for (int i = OldAction.Count - 1; i >= 0; i--)
                {
                    var a = OldAction[i];
                    qLearning.UpdateState(a.Item1, a.Item2, a.Item3, a.Item4);
                }

                System.Diagnostics.Debug.WriteLine(steps);

                iteration++;

                // 显示当前迭代 show current iteration
                SetText(iterationBox, iteration.ToString());
            }

            // 启用设置控件 enable settings controls
            EnableControls(true);
        }