示例#1
0
		public void Smooth(ref double[,] inputValues)
		{
			// TODO: Using the matrix works, but does a lot of data accesses. Can improve by working out all the data access myself? I might be able to cut down on number of data accesses, but not sure.
		    var inputMatrix = new DenseMatrix(inputValues.GetLength(0), inputValues.GetLength(1));

			for (int i = 0; i < inputMatrix.RowCount; i++)
			{
				inputMatrix.SetRow(i, Smooth(inputMatrix.Row(i).ToArray()));
			}

			for (int i = 0; i < inputMatrix.ColumnCount; i++)
			{
				inputMatrix.SetColumn(i, Smooth(inputMatrix.Column(i).ToArray()));
			}

			inputValues = inputMatrix.ToArray();
		}
示例#2
0
        /// <summary>
        /// Run example
        /// </summary>
        public void Run()
        {
            // Format vector output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Create new empty square matrix
            var matrix = new DenseMatrix(10);
            Console.WriteLine(@"Empty matrix");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 1. Fill matrix by data using indexer []
            var k = 0;
            for (var i = 0; i < matrix.RowCount; i++)
            {
                for (var j = 0; j < matrix.ColumnCount; j++)
                {
                    matrix[i, j] = k++;
                }
            }

            Console.WriteLine(@"1. Fill matrix by data using indexer []");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Fill matrix by data using At. The element is set without range checking.
            for (var i = 0; i < matrix.RowCount; i++)
            {
                for (var j = 0; j < matrix.ColumnCount; j++)
                {
                    matrix.At(i, j, k--);
                }
            }

            Console.WriteLine(@"2. Fill matrix by data using At");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Clone matrix
            var clone = matrix.Clone();
            Console.WriteLine(@"3. Clone matrix");
            Console.WriteLine(clone.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 4. Clear matrix
            clone.Clear();
            Console.WriteLine(@"4. Clear matrix");
            Console.WriteLine(clone.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 5. Copy matrix into another matrix
            matrix.CopyTo(clone);
            Console.WriteLine(@"5. Copy matrix into another matrix");
            Console.WriteLine(clone.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 6. Get submatrix into another matrix
            var submatrix = matrix.SubMatrix(2, 2, 3, 3);
            Console.WriteLine(@"6. Copy submatrix into another matrix");
            Console.WriteLine(submatrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 7. Get part of the row as vector. In this example: get 4 elements from row 5 starting from column 3
            var row = matrix.Row(5, 3, 4);
            Console.WriteLine(@"7. Get part of the row as vector");
            Console.WriteLine(row.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 8. Get part of the column as vector. In this example: get 3 elements from column 2 starting from row 6
            var column = matrix.Column(2, 6, 3);
            Console.WriteLine(@"8. Get part of the column as vector");
            Console.WriteLine(column.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 9. Get columns using column enumerator. If you need all columns you may use ColumnEnumerator without parameters
            Console.WriteLine(@"9. Get columns using column enumerator");
            foreach (var keyValuePair in matrix.ColumnEnumerator(2, 4))
            {
                Console.WriteLine(@"Column {0}: {1}", keyValuePair.Item1, keyValuePair.Item2.ToString("#0.00\t", formatProvider));
            }

            Console.WriteLine();

            // 10. Get rows using row enumerator. If you need all rows you may use RowEnumerator without parameters
            Console.WriteLine(@"10. Get rows using row enumerator");
            foreach (var keyValuePair in matrix.RowEnumerator(4, 3))
            {
                Console.WriteLine(@"Row {0}: {1}", keyValuePair.Item1, keyValuePair.Item2.ToString("#0.00\t", formatProvider));
            }

            Console.WriteLine();

            // 11. Convert matrix into multidimensional array
            var data = matrix.ToArray();
            Console.WriteLine(@"11. Convert matrix into multidimensional array");
            for (var i = 0; i < data.GetLongLength(0); i++)
            {
                for (var j = 0; j < data.GetLongLength(1); j++)
                {
                    Console.Write(data[i, j].ToString("#0.00\t"));
                }

                Console.WriteLine();
            }

            Console.WriteLine();

            // 12. Convert matrix into row-wise array
            var rowwise = matrix.ToRowWiseArray();
            Console.WriteLine(@"12. Convert matrix into row-wise array");
            for (var i = 0; i < matrix.RowCount; i++)
            {
                for (var j = 0; j < matrix.ColumnCount; j++)
                {
                    Console.Write(rowwise[(i * matrix.ColumnCount) + j].ToString("#0.00\t"));
                }

                Console.WriteLine();
            }

            Console.WriteLine();

            // 13. Convert matrix into column-wise array
            var columnise = matrix.ToColumnWiseArray();
            Console.WriteLine(@"13. Convert matrix into column-wise array");
            for (var i = 0; i < matrix.RowCount; i++)
            {
                for (var j = 0; j < matrix.ColumnCount; j++)
                {
                    Console.Write(columnise[(j * matrix.RowCount) + i].ToString("#0.00\t"));
                }

                Console.WriteLine();
            }

            Console.WriteLine();

            // 14. Get matrix diagonal as vector
            var diagonal = matrix.Diagonal();
            Console.WriteLine(@"14. Get matrix diagonal as vector");
            Console.WriteLine(diagonal.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
        }
示例#3
0
        private void optimize(DenseMatrix coefficients, DenseVector objFunValues, bool artifical)
        {
            //for calculations on the optimal solution row
            int cCounter,
                width = coefficients.ColumnCount;
            DenseVector cBVect = new DenseVector(basics.Count);

            //Sets up the b matrix
            DenseMatrix b = new DenseMatrix(basics.Count, 1);

            //basics will have values greater than coefficients.ColumnCount - 1 if there are still artificial variables
            //or if Nathan is bad and didn't get rid of them correctly
            foreach (int index in basics)
            {
                b = (DenseMatrix)b.Append(DenseVector.OfVector(coefficients.Column(index)).ToColumnMatrix());
            }
            // removes the first column
            b = (DenseMatrix)b.SubMatrix(0, b.RowCount, 1, b.ColumnCount - 1);

            double[] cPrimes = new double[width];
            double[] rhsOverPPrime;
            DenseMatrix[] pPrimes = new DenseMatrix[width];
            DenseMatrix bInverse;

            int newEntering, exitingRow;

            bool optimal = false;

            if(artifical)
            {
                rhsOverPPrime = new double[numConstraints + 1];
            }
            else
            {
                rhsOverPPrime = new double[numConstraints];
            }

            while (!optimal)
            {
                //calculates the inverse of b for this iteration
                bInverse = (DenseMatrix)b.Inverse();

                //updates the C vector with the most recent basic variables
                cCounter = 0;
                foreach (int index in basics)
                {
                    cBVect[cCounter++] = objFunValues.At(index);
                }

                //calculates the pPrimes and cPrimes
                for (int i = 0; i < coefficients.ColumnCount; i++)
                {
                    if (!basics.Contains(i))
                    {
                        pPrimes[i] = (DenseMatrix)bInverse.Multiply((DenseMatrix)coefficients.Column(i).ToColumnMatrix());

                        //c' = objFunVals - cB * P'n
                        //At(0) to turn it into a double
                        cPrimes[i] = objFunValues.At(i) - (pPrimes[i].LeftMultiply(cBVect)).At(0);
                    }
                    else
                    {
                        pPrimes[i] = null;
                    }
                }

                //RHS'
                xPrime = (DenseMatrix)bInverse.Multiply((DenseMatrix)rhsValues.ToColumnMatrix());

                //Starts newEntering as the first nonbasic
                newEntering = -1;
                int iter = 0;
                while(newEntering == -1)
                {
                    if(!basics.Contains(iter))
                    {
                        newEntering = iter;
                    }

                    iter++;
                }

                //new entering becomes the small cPrime that corresponds to a non-basic value
                for (int i = 0; i < cPrimes.Length; i++)
                {
                    if (cPrimes[i] < cPrimes[newEntering] && !basics.Contains(i))
                    {
                        newEntering = i;
                    }
                }

                //if the smallest cPrime is >= 0, ie they are all positive
                if (cPrimes[newEntering] >= 0)
                {
                    optimal = true;
                }
                else
                {
                    //fix me to deal with if all these values are negative
                    exitingRow = 0;
                    for (int i = 0; i < xPrime.RowCount; i++)
                    {
                        double[,] pPrime = pPrimes[newEntering].ToArray();
                        rhsOverPPrime[i] = xPrime.ToArray()[i, 0] / pPrime[i, 0];

                        if (rhsOverPPrime[i] < rhsOverPPrime[exitingRow] && rhsOverPPrime[i] > 0 )
                        {
                            exitingRow = i;
                        }
                    }

                    //translates from the index in the basics list to the actual row
                    exitingRow = basics[exitingRow];

                    //make sure you're not being stupid here!!!!
                    int tempIndex = basics.IndexOf(exitingRow);
                    basics.Remove(exitingRow);

                    basics.Insert(tempIndex, newEntering);

                    b.SetColumn(basics.IndexOf(newEntering), coefficients.Column(newEntering));
                }
            }
        }