示例#1
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/Matrix_norm">Matrix norm</seealso>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Create square matrix
            var matrix = new DenseMatrix(new[,] { { 1.0, 2.0, 3.0 }, { 6.0, 5.0, 4.0 }, { 8.0, 9.0, 7.0 } });
            Console.WriteLine(@"Initial square matrix");
            Console.WriteLine(matrix.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 1. 1-norm of the matrix
            Console.WriteLine(@"1. 1-norm of the matrix");
            Console.WriteLine(matrix.L1Norm());
            Console.WriteLine();

            // 2. 2-norm of the matrix
            Console.WriteLine(@"2. 2-norm of the matrix");
            Console.WriteLine(matrix.L2Norm());
            Console.WriteLine();

            // 3. Frobenius norm of the matrix
            Console.WriteLine(@"3. Frobenius norm of the matrix");
            Console.WriteLine(matrix.FrobeniusNorm());
            Console.WriteLine();

            // 4. Infinity norm of the matrix
            Console.WriteLine(@"4. Infinity norm of the matrix");
            Console.WriteLine(matrix.InfinityNorm());
            Console.WriteLine();

            // 5. Normalize matrix columns
            Console.WriteLine(@"5. Normalize matrix columns: before normalize");
            foreach (var keyValuePair in matrix.ColumnEnumerator())
            {
                Console.WriteLine(@"Column {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }

            Console.WriteLine();
            var normalized = matrix.NormalizeColumns(2);
            Console.WriteLine(@"5. Normalize matrix columns: after normalize");
            foreach (var keyValuePair in normalized.ColumnEnumerator())
            {
                Console.WriteLine(@"Column {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }

            Console.WriteLine();

            // 6. Normalize matrix columns
            Console.WriteLine(@"6. Normalize matrix rows: before normalize");
            foreach (var keyValuePair in matrix.RowEnumerator())
            {
                Console.WriteLine(@"Row {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }

            Console.WriteLine();
            normalized = matrix.NormalizeRows(2);
            Console.WriteLine(@"6. Normalize matrix rows: after normalize");
            foreach (var keyValuePair in normalized.RowEnumerator())
            {
                Console.WriteLine(@"Row {0} 2-nd norm is: {1}", keyValuePair.Item1, keyValuePair.Item2.Norm(2));
            }
        }
示例#2
0
        /// <summary>
        /// Adaptive Cross Approximation (ACA) matrix compression
        /// the result is stored in U and V matrices like U*V
        /// </summary>
        /// <param name="acaThres">Relative error threshold to stop adding rows and columns in ACA iteration</param>
        /// <param name="m">Row indices of Z submatrix to compress</param>
        /// <param name="n">Column indices of Z submatrix to compress</param>
        /// <param name="U">to store result</param>
        /// <param name="V">to store result</param>
        /// <returns>pair with matrix U and V</returns>
        public static Tuple<Matrix, Matrix> Aca(double acaThres, List<int> m, List<int> n, Matrix U, Matrix V)
        {
            int M = m.Count;
            int N = n.Count;
            int Min = Math.Min(M, N);
            U = new DenseMatrix(Min, Min);
            V = new DenseMatrix(Min, Min);
            //if Z is a vector, there is nothing to compress
            if (M == 1 || N == 1)
            {
                U = UserImpedance(m, n);
                V = new DenseMatrix(1, 1);
                V[0, 0] = 1.0;
                return new Tuple<Matrix,Matrix>(U,V);
            }

            //Indices of columns picked up from Z
            //Vector J = new DenseVector(N);
            //List<int> J = new List<int>(N);

            List<int> J = new List<int>(new int [N]);
            //int[] J = new int[N];
            //Indices of rows picked up from Z
            //Vector I = new DenseVector(M);
            List<int> I = new List<int>(new int [M]);
            //int[] I = new int[M];
            //Row indices to search for maximum in R
            //Vector i = new DenseVector(M);
            List<int> i = new List<int>();
            //int[] i = new int[M];
            //Column indices to search for maximum in R
            //Vector j = new DenseVector(N);
            List<int> j = new List<int>();
            //int[] j = new int[N];

            for (int k = 1; k < M; k++)
            {
                i.Add(k);
            }

            for (int k = 0; k < N; k++)
            {
                j.Add(k);
            }

            //Initialization

            //Initialize the 1st row index I(1) = 1
            I[0] = 0;

            //Initialize the 1st row of the approximate error matrix
            List<int> m0 = new List<int>();
            m0.Add(m[I[0]]);
            Matrix Rik = UserImpedance(m0, n);

            //Find the 1st column index J(0)
            double max = -1.0;
            int col = 0;

            foreach (int ind in j)
            {
                if (Math.Abs(Rik[0, ind]) > max)
                {
                    max = Math.Abs(Rik[0, ind]);
                    col = ind;
                }
            }

            //J[0] = j[col];
            J[0] = col;
            j.Remove(J[0]);

            //First row of V
            V = new DenseMatrix(1, Rik.ColumnCount);
            V.SetRow(0, Rik.Row(0).Divide(Rik[0, J[0]]));

            //Initialize the 1st column of the approximate error matrix
            List<int> n0 = new List<int>();
            n0.Add(n[J[0]]);
            Matrix Rjk = UserImpedance(m, n0);

            //First column of U
            U = new DenseMatrix(Rjk.RowCount, 1);
            U.SetColumn(0, Rjk.Column(0));

            // Norm of (approximate) Z, to test error
            double d1 = U.L2Norm();
            double d2 = V.L2Norm();
            double normZ = d1 * d1 * d2 * d2;

            //Find 2nd row index I(2)
            int row = 0;
            max = -1.0;

            foreach (int ind in i)
            {
                if (Math.Abs(Rjk[ind, 0]) > max)
                {
                    max = Math.Abs(Rjk[ind, 0]);
                    row = ind;
                }
            }

            //I[1] = i[row];
            I[1] = row;
            i.Remove(I[1]);

            //Iteration
            for (int k = 1; k < Math.Min(M, N); k++)
            {
                //Update (Ik)th row of the approximate error matrix:
                List<int> t1 = new List<int>();
                t1.Add(m[I[k]]);
                Rik = (Matrix)(UserImpedance(t1, n) - U.SubMatrix(I[k], 1, 0, U.ColumnCount).Multiply(V));
                //CHECKED OK all code before works fine
                //Find kth column index Jk
                max = -1.0;
                col = 0;

                foreach (int ind in j)
                {
                    if (Math.Abs(Rik[0, ind]) > max)
                    {
                        max = Math.Abs(Rik[0, ind]);
                        col = ind;
                    }
                }

                J[k] = col;
                j.Remove(J[k]);

                //Terminate if R(I(k),J(k)) == 0
                if (Rik[0, J[k]] == 0)
                {
                    break;
                }

                //Set k-th row of V equal to normalized error
                Matrix Vk = (Matrix)Rik.Divide(Rik[0, J[k]]);

                //Update (Jk)th column of the approximate error matrix
                List<int> n1 = new List<int>();
                n1.Add(n[J[k]]);
                Rjk = (Matrix)(UserImpedance(m, n1) - U.Multiply(V.SubMatrix(0, V.RowCount, J[k], 1)));

                // Set k-th column of U equal to updated error
                Matrix Uk = Rjk;

                //Norm of approximate Z
                //Matrix s = (Matrix)(U.Transpose().Multiply(Uk)).Multiply((Vk.Multiply(V.Transpose())).Transpose());
                //Matrix s = (Matrix)((U.Transpose()).Multiply(Uk)).Multiply(((Vk.Multiply(V.Transpose())).Transpose()));
                Matrix a = (Matrix)U.Transpose().Multiply(Uk);
                Matrix b = (Matrix)Vk.Multiply(V.Transpose()).Transpose();
                Matrix s = (Matrix)a.PointwiseMultiply(b);
                double sum = 0;

                for (int i1 = 0; i1 < s.RowCount; i1++)
                {
                    for (int j1 = 0; j1 < s.ColumnCount; j1++)
                    {
                        sum += s[i1, j1];
                    }
                }

                d1 = Uk.L2Norm();
                d2 = Vk.L2Norm();

                normZ += 2 * sum + d1 * d1 * d2 * d2;

                //Update U and V

                //U.SetColumn(U.ColumnCount - 1, Uk.Column(0));
                //V.SetRow(V.RowCount - 1, Vk.Row(0));
                U = AddColumn(U, (Vector)Uk.Column(0));
                //U.SetColumn(k, Uk.Column(0));
                V = AddRow(V, (Vector)Vk.Row(0));
                //V.SetRow(k, Vk.Row(0));

                if (d1 * d2 <= acaThres * Math.Sqrt(normZ))
                {
                    break;
                }

                if (k == Math.Min(N, M) - 1)
                {
                    break;
                }

                max = -1;
                row = 0;

                foreach (int ind in i)
                {
                    if (Math.Abs(Rjk[ind, 0]) > max)
                    {
                        max = Math.Abs(Rjk[ind, 0]);
                        row = ind;
                    }
                }

                I[k + 1] = row;
                //i = removeIndex(i,I[k+1]);
                i.Remove(I[k + 1]);
            }
            return new Tuple<Matrix, Matrix>(U, V);
        }