public double[] getSamples(int num) // 获取指定个数的样本 { double[] ret = new double[num]; int[] ret_int = new int[num]; switch (DistributionName) { case "Normal": normalDis.Samples(ret); break; case "ContinuousUniform": continuousUniformDis.Samples(ret); break; case "Triangular": triangularDis.Samples(ret); break; case "StudentT": studentTDis.Samples(ret); break; case "DiscreteUniform": discreteUniform.Samples(ret_int); for (int i = 0; i < num; i++) { ret[i] = ret_int[i]; } break; } return(ret); }
public void CanSampleSequence() { var n = new StudentT(); var ied = n.Samples(); ied.Take(5).ToArray(); }
public static double[] studentT(double v1, double v2, double v3, int num) { var t = new StudentT(v1, v2, v3); double[] ret = new double[num]; t.Samples(ret); return(ret); }
public void FailSampleSequenceStatic(double location, double scale, double dof) { var ied = StudentT.Samples(new Random(), location, scale, dof); var e = ied.Take(5).ToArray(); }
public void CanSampleSequenceStatic() { var ied = StudentT.Samples(new Random(), 0.0, 1.0, 3.0); var arr = ied.Take(5).ToArray(); }
public void FailSampleSequenceStatic() { var ied = StudentT.Samples(new Random(0), 0.0, 1.0, Double.NaN); Assert.Throws <ArgumentOutOfRangeException>(() => ied.Take(5).ToArray()); }
public void CanSampleSequenceStatic() { var ied = StudentT.Samples(new Random(0), 0.0, 1.0, 3.0); GC.KeepAlive(ied.Take(5).ToArray()); }
public void CanSampleSequence() { var n = new StudentT(); var ied = n.Samples(); var e = ied.Take(5).ToArray(); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/StudentT_distribution">StudentT distribution</a> public void Run() { // 1. Initialize the new instance of the StudentT distribution class with parameters Location = 0, Scale = 1, DegreesOfFreedom = 1 var studentT = new StudentT(); Console.WriteLine(@"1. Initialize the new instance of the StudentT distribution class with parameters Location = {0}, Scale = {1}, DegreesOfFreedom = {2}", studentT.Location, studentT.Scale, studentT.DegreesOfFreedom); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", studentT); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", studentT.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", studentT.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", studentT.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", studentT.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", studentT.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", studentT.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", studentT.Mean.ToString(" #0.00000;-#0.00000")); // Median Console.WriteLine(@"{0} - Median", studentT.Median.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", studentT.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", studentT.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", studentT.StdDev.ToString(" #0.00000;-#0.00000")); // 3. Generate 10 samples of the StudentT distribution Console.WriteLine(@"3. Generate 10 samples of the StudentT distribution"); for (var i = 0; i < 10; i++) { Console.Write(studentT.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the StudentT(0, 1, 1) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the StudentT(0, 1, 1) distribution and display histogram"); var data = new double[100000]; StudentT.Samples(data, 0, 1, 1); ConsoleHelper.DisplayHistogram(data); // 5. Generate 100000 samples of the StudentT(0, 1, 5) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the StudentT(0, 1, 5) distribution and display histogram"); StudentT.Samples(data, 0, 1, 5); ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the StudentT(0, 1, 10) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the StudentT(0, 1, 10) distribution and display histogram"); StudentT.Samples(data, 0, 1, 10); ConsoleHelper.DisplayHistogram(data); }