static double[][] GenerateRandomVector() { double[] excpectationVector = { 116, 102, 113, 100, 107, 110 }; double[] variance = { 1, 36, 4, 49, 16, 9 }; double[][] oilCost = new double[2][]; for (int i = 0; i < 2; i++) { oilCost[i] = new double[3]; for (int j = 0; j < 3; j++) { do { oilCost[i][j] = StudentT.Sample(excpectationVector[i + j], Math.Sqrt(variance[i + j]), 4); }while (80 > oilCost[i][j] && oilCost[i][j] > 120); } } return(oilCost); }
public double getSample() // 获取当前分布样本 { double ret = 0; switch (DistributionName) { case "Normal": ret = normalDis.Sample(); break; case "ContinuousUniform": ret = continuousUniformDis.Sample(); break; case "Triangular": ret = triangularDis.Sample(); break; case "StudentT": ret = studentTDis.Sample(); break; case "DiscreteUniform": ret = discreteUniform.Sample(); break; } return(ret); }
public void CanSample() { var n = new StudentT(); var d = n.Sample(); }
public void FailSampleStatic(double location, double scale, double dof) { var d = StudentT.Sample(new Random(), location, scale, dof); }
public void CanSampleStatic() { var d = StudentT.Sample(new Random(), 0.0, 1.0, 3.0); }
public void FailSampleStatic() { Assert.Throws <ArgumentOutOfRangeException>(() => StudentT.Sample(new Random(0), Double.NaN, 1.0, Double.NaN)); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/StudentT_distribution">StudentT distribution</a> public void Run() { // 1. Initialize the new instance of the StudentT distribution class with parameters Location = 0, Scale = 1, DegreesOfFreedom = 1 var studentT = new StudentT(); Console.WriteLine(@"1. Initialize the new instance of the StudentT distribution class with parameters Location = {0}, Scale = {1}, DegreesOfFreedom = {2}", studentT.Location, studentT.Scale, studentT.DegreesOfFreedom); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", studentT); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", studentT.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", studentT.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", studentT.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", studentT.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", studentT.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", studentT.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", studentT.Mean.ToString(" #0.00000;-#0.00000")); // Median Console.WriteLine(@"{0} - Median", studentT.Median.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", studentT.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", studentT.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", studentT.StdDev.ToString(" #0.00000;-#0.00000")); // 3. Generate 10 samples of the StudentT distribution Console.WriteLine(@"3. Generate 10 samples of the StudentT distribution"); for (var i = 0; i < 10; i++) { Console.Write(studentT.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the StudentT(0, 1, 1) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the StudentT(0, 1, 1) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = studentT.Sample(); } ConsoleHelper.DisplayHistogram(data); // 5. Generate 100000 samples of the StudentT(0, 1, 5) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the StudentT(0, 1, 5) distribution and display histogram"); studentT.DegreesOfFreedom = 5; for (var i = 0; i < data.Length; i++) { data[i] = studentT.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the StudentT(0, 1, 10) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the StudentT(0, 1, 10) distribution and display histogram"); studentT.DegreesOfFreedom = 10; for (var i = 0; i < data.Length; i++) { data[i] = studentT.Sample(); } ConsoleHelper.DisplayHistogram(data); }