public void ValidateDensityLn( [Values(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)] double location, [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)] double scale, [Values(1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity)] double dof, [Values(0.0, 1.0, -1.0, 2.0, -2.0, 0.0, 1.0, -1.0, 2.0, -2.0, 0.0, 1.0, 2.0)] double x, [Values(-1.144729885849399, -1.837877066409348, -1.837877066409348, -2.754167798283503, -2.754167798283503, -1.039720770839917, -1.647918433002166, -1.647918433002166, -2.687639203842085, -2.687639203842085, -0.918938533204672, -1.418938533204674, -2.918938533204674)] double p) { var n = new StudentT(location, scale, dof); AssertHelpers.AlmostEqual(p, n.DensityLn(x), 13); }
public void ValidateDensityLn(double location, double scale, double dof, double x, double p) { var n = new StudentT(location, scale, dof); AssertHelpers.AlmostEqual(p, n.DensityLn(x), 13); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/StudentT_distribution">StudentT distribution</a> public void Run() { // 1. Initialize the new instance of the StudentT distribution class with parameters Location = 0, Scale = 1, DegreesOfFreedom = 1 var studentT = new StudentT(); Console.WriteLine(@"1. Initialize the new instance of the StudentT distribution class with parameters Location = {0}, Scale = {1}, DegreesOfFreedom = {2}", studentT.Location, studentT.Scale, studentT.DegreesOfFreedom); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", studentT); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", studentT.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", studentT.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", studentT.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Entropy Console.WriteLine(@"{0} - Entropy", studentT.Entropy.ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", studentT.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", studentT.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", studentT.Mean.ToString(" #0.00000;-#0.00000")); // Median Console.WriteLine(@"{0} - Median", studentT.Median.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", studentT.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", studentT.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", studentT.StdDev.ToString(" #0.00000;-#0.00000")); // 3. Generate 10 samples of the StudentT distribution Console.WriteLine(@"3. Generate 10 samples of the StudentT distribution"); for (var i = 0; i < 10; i++) { Console.Write(studentT.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the StudentT(0, 1, 1) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the StudentT(0, 1, 1) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = studentT.Sample(); } ConsoleHelper.DisplayHistogram(data); // 5. Generate 100000 samples of the StudentT(0, 1, 5) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the StudentT(0, 1, 5) distribution and display histogram"); studentT.DegreesOfFreedom = 5; for (var i = 0; i < data.Length; i++) { data[i] = studentT.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the StudentT(0, 1, 10) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the StudentT(0, 1, 10) distribution and display histogram"); studentT.DegreesOfFreedom = 10; for (var i = 0; i < data.Length; i++) { data[i] = studentT.Sample(); } ConsoleHelper.DisplayHistogram(data); }