public static void Run() { var folder = @"C:\dev\GitHub\p9-data\small\fits\simulation_point\"; var data = DataLoading.SimulatedPoints.Load(folder); var gridSizes = new int[] { 256, 512, 1024, 2048, 4096 }; Directory.CreateDirectory("GPUSpeedup"); var writer = new StreamWriter("GPUSpeedup/GPUSpeedup.txt", false); writer.WriteLine("imgSize;iterCPU;timeCPU;iterGPU;timeGPU"); foreach (var gridSize in gridSizes) { var visibilitiesCount = data.visibilitiesCount; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = (1.0 * 256 / gridSize) / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, data.uvw, data.frequencies); var frequencies = FitsIO.ReadFrequencies(Path.Combine(folder, "freq.fits")); var uvw = FitsIO.ReadUVW(Path.Combine(folder, "uvw.fits")); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(Path.Combine(folder, "vis.fits"), uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var residualVis = data.visibilities; var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.uvw, data.frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))); var bMapCPU = bMapCalculator.Convolve(dirtyImage); var bMapGPU = bMapCalculator.Convolve(dirtyImage); var fastCD = new FastSerialCD(totalSize, psf); var gpuCD = new GPUSerialCD(totalSize, psf, 1000); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.5f; var xCPU = new float[gridSize, gridSize]; var cpuResult = fastCD.Deconvolve(xCPU, bMapCPU, lambda, alpha, 10000, 1e-8f); FitsIO.Write(xCPU, "GPUSpeedup/cpuResult" + gridSize + ".fits"); var xGPU = new float[gridSize, gridSize]; var gpuResult = gpuCD.Deconvolve(xGPU, bMapGPU, lambda, alpha, 10000, 1e-8f); FitsIO.Write(xCPU, "GPUSpeedup/gpuResult" + gridSize + ".fits"); writer.WriteLine(gridSize + ";" + cpuResult.IterationCount + ";" + cpuResult.ElapsedTime.TotalSeconds + ";" + gpuResult.IterationCount + ";" + gpuResult.ElapsedTime.TotalSeconds); writer.Flush(); } writer.Close(); }
private static float[,] CalculatePSF(Intracommunicator comm, GriddingConstants c, List <List <Subgrid> > metadata, double[,,] uvw, bool[,,] flags, double[] frequencies) { float[,] psf = null; var localGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf_total = comm.Reduce(localGrid, SequentialSum, 0); if (comm.Rank == 0) { psf = FFT.BackwardFloat(psf_total, c.VisibilitiesCount); FFT.Shift(psf); } comm.Broadcast(ref psf, 0); return(psf); }
public static void GenerateSerialCDExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; for (int cycle = 0; cycle < 100; cycle++) { var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); Tools.WriteToMeltCSV(Common.PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CD_" + cycle + ".csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients_CD_" + cycle + ".csv")); fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 4); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } }
public static void Run() { //var frequencies = FitsIO.ReadFrequencies(@"C:\Users\Jon\github\p9-data\small\fits\simulation_point\freq.fits"); //var uvw = FitsIO.ReadUVW(@"C:\Users\Jon\github\p9-data\small\fits\simulation_point\uvw.fits"); var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset var visibilitiesCount = flags.Length; int gridSize = 64; int subgridsize = 16; int kernelSize = 8; int max_nr_timesteps = 64; double cellSize = 2.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.Backward(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var maxPsf = psf[gridSize / 2, gridSize / 2]; for (int i = 0; i < psf.GetLength(0); i++) { for (int j = 0; j < psf.GetLength(1); j++) { psf[i, j] = psf[i, j] / maxPsf; } } FitsIO.Write(psf, "psf.fits"); var truth = new double[64, 64]; //truth[40, 50] = 1.5; truth[0, 0] = 1.7; var dirty = ConvolveFFTPadded(truth, psf); FitsIO.Write(truth, "truth.fits"); FitsIO.Write(dirty, "dirty.fits"); var psf2 = ConvolveFFT(psf, psf); var b = ConvolveFFTPadded(dirty, psf); var a = psf2[gridSize / 2, gridSize / 2]; /* * var integral = CalcPSf2Integral(psf); * FitsIO.Write(integral, "psfIntegral.fits"); * var c0 = new double[64, 64]; * var qY = 0; * var qX = 0; * c0[qY, qX] = 1.0; * c0 = Convolve(c0, psf); * FitsIO.Write(c0, "cx0.fits"); * var cx = ConvolveFFT(c0, psf); * FitsIO.Write(cx, "cx1.fits"); * var a2 = cx[qY, qX]; * var res = QueryIntegral(integral, qY, qX);*/ var x = new double[gridSize, gridSize]; //Deconv(x, dirty, psf, psf2, a, 0.0); var dCopy = new double[gridSize, gridSize]; for (int i = 0; i < b.GetLength(0); i++) { for (int j = 0; j < b.GetLength(1); j++) { dCopy[i, j] = dirty[i, j]; } } var x2 = new double[gridSize, gridSize]; var converged = GreedyCD.Deconvolve2(x2, dirty, psf, 0.0, 1.0, 500, dCopy); }
public static void GeneratePSFs(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var c = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var maskedPsf = Copy(psf); Tools.Mask(maskedPsf, 2); var reverseMasked = Copy(psf); Tools.ReverseMask(reverseMasked, 2); var psf2 = PSF.CalcPSFSquared(psf); var psf2Cut = PSF.CalcPSFSquared(maskedPsf); Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv")); Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv")); Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv")); Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv")); Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv")); var x = new float[c.GridSize, c.GridSize]; x[10, 10] = 1.0f; var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) { var zeroPadded = convolver.Convolve(x); var psf2Edge = correlator.Convolve(zeroPadded); Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv")); Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv")); } convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0))) Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv")); //================================================= Reconstruct ============================================================= var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var reconstruction = new float[c.GridSize, c.GridSize]; var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 5; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); if (cycle == 0) { Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv")); } fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits")); Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv")); }
public static void GenerateCLEANExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 10; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); //FitsIO.Write(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".csv")); var maxY = -1; var maxX = -1; var max = 0.0f; for (int y = 0; y < dirtyImage.GetLength(0); y++) { for (int x = 0; x < dirtyImage.GetLength(1); x++) { if (max < Math.Abs(dirtyImage[y, x])) { maxY = y; maxX = x; max = Math.Abs(dirtyImage[y, x]); } } } //FitsIO.Write(reconstruction, Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".csv")); reconstruction[maxY, maxX] += 0.5f * dirtyImage[maxY, maxX]; FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } var cleanbeam = new float[c.GridSize, c.GridSize]; var x0 = c.GridSize / 2; var y0 = c.GridSize / 2; for (int y = 0; y < cleanbeam.GetLength(0); y++) { for (int x = 0; x < cleanbeam.GetLength(1); x++) { cleanbeam[y, x] = (float)(1.0 * Math.Exp(-(Math.Pow(x0 - x, 2) / 16 + Math.Pow(y0 - y, 2) / 16))); } } FitsIO.Write(cleanbeam, Path.Combine(outputFolder, "clbeam.fits")); FFT.Shift(cleanbeam); var CL = FFT.Forward(cleanbeam); var REC = FFT.Forward(reconstruction); var CONF = Common.Fourier2D.Multiply(REC, CL); var cleaned = FFT.BackwardFloat(CONF, reconstruction.Length); //FFT.Shift(cleaned); //FitsIO.Write(cleaned, Path.Combine(outputFolder, "rec_CLEAN.fits")); Tools.WriteToMeltCSV(PSF.Cut(cleaned), Path.Combine(outputFolder, "rec_CLEAN.csv")); }
public static void DebugILGPU() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.Backward(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var psfCutDouble = CutImg(psf); var psfCut = ToFloatImage(psfCutDouble); FitsIO.Write(psfCut, "psfCut.fits"); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var imageSection = new Rectangle(0, 128, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); fastCD.ResetLipschitzMap(ToFloatImage(psf)); var gpuCD = new GPUSerialCD(totalSize, psfCut, 100); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.8f; var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; /*var truth = new double[gridSize, gridSize]; * truth[30, 30] = 1.0; * truth[35, 36] = 1.5; * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies); * visibilities = truthVis; * var residualVis = truthVis;*/ for (int cycle = 0; cycle < 4; cycle++) { //FORWARD watchForward.Start(); var dirtyGrid = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits"); watchForward.Stop(); //DECONVOLVE watchDeconv.Start(); bMapCalculator.ConvolveInPlace(dirtyImage); FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits"); //var result = fastCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f); var result = gpuCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f); if (result.Converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits"); FitsIO.Write(dirtyImage, "residualDebug_" + cycle + ".fits"); watchDeconv.Stop(); //BACKWARDS watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); var hello = FFT.Forward(xImage, 1.0); hello = Common.Fourier2D.Multiply(hello, psfGrid); var hImg = FFT.Backward(hello, (double)(128 * 128)); //FFT.Shift(hImg); FitsIO.Write(hImg, "modelDirty_FFT.fits"); var imgRec = IDG.ToImage(c, metadata, modelVis, uvw, frequencies); FitsIO.Write(imgRec, "modelDirty" + cycle + ".fits"); } }
public static void DebugSimulatedApprox() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var psfCut = PSF.Cut(psf); FitsIO.Write(psfCut, "psfCut.fits"); var random = new Random(123); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); //fastCD.ResetAMap(psf); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.8f; var approx = new ApproxParallel(); var approx2 = new ApproxFast(totalSize, psfCut, 4, 8, 0f, 0.25f, false, true); var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; /*var truth = new double[gridSize, gridSize]; * truth[30, 30] = 1.0; * truth[35, 36] = 1.5; * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies); * visibilities = truthVis; * var residualVis = truthVis;*/ var data = new ApproxFast.TestingData(new StreamWriter("approxConvergence.txt")); for (int cycle = 0; cycle < 4; cycle++) { //FORWARD watchForward.Start(); var dirtyGrid = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits"); watchForward.Stop(); //DECONVOLVE watchDeconv.Start(); //approx.ISTAStep(xImage, dirtyImage, psf, lambda, alpha); //FitsIO.Write(xImage, "xIsta.fits"); //FitsIO.Write(dirtyImage, "dirtyFista.fits"); //bMapCalculator.ConvolveInPlace(dirtyImage); //FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits"); //var result = fastCD.Deconvolve(xImage, dirtyImage, 0.5f * fastCD.MaxLipschitz, 0.8f, 1000, 1e-4f); //var converged = approx.DeconvolveActiveSet(xImage, dirtyImage, psfCut, lambda, alpha, random, 8, 1, 1); //var converged = approx.DeconvolveGreedy(xImage, dirtyImage, psfCut, lambda, alpha, random, 4, 4, 500); //var converged = approx.DeconvolveApprox(xImage, dirtyImage, psfCut, lambda, alpha, random, 1, threads, 500, 1e-4f, cycle == 0); approx2.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, psf, lambda, alpha, random, 10, 1e-4f); if (data.converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } FitsIO.Write(xImage, "xImageApprox_" + cycle + ".fits"); watchDeconv.Stop(); //BACKWARDS watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } var dirtyGridCheck = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyCheck = FFT.Backward(dirtyGridCheck, c.VisibilitiesCount); FFT.Shift(dirtyCheck); var l2Penalty = Residuals.CalcPenalty(ToFloatImage(dirtyCheck)); var elasticPenalty = ElasticNet.CalcPenalty(xImage, (float)lambda, (float)alpha); var sum = l2Penalty + elasticPenalty; data.writer.Close(); }