public static void Run()
        {
            var folder    = @"C:\dev\GitHub\p9-data\small\fits\simulation_point\";
            var data      = DataLoading.SimulatedPoints.Load(folder);
            var gridSizes = new int[] { 256, 512, 1024, 2048, 4096 };

            Directory.CreateDirectory("GPUSpeedup");
            var writer = new StreamWriter("GPUSpeedup/GPUSpeedup.txt", false);

            writer.WriteLine("imgSize;iterCPU;timeCPU;iterGPU;timeGPU");
            foreach (var gridSize in gridSizes)
            {
                var    visibilitiesCount = data.visibilitiesCount;
                int    subgridsize       = 8;
                int    kernelSize        = 4;
                int    max_nr_timesteps  = 1024;
                double cellSize          = (1.0 * 256 / gridSize) / 3600.0 * Math.PI / 180.0;
                var    c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);
                var    metadata = Partitioner.CreatePartition(c, data.uvw, data.frequencies);

                var    frequencies  = FitsIO.ReadFrequencies(Path.Combine(folder, "freq.fits"));
                var    uvw          = FitsIO.ReadUVW(Path.Combine(folder, "uvw.fits"));
                var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length];
                double norm         = 2.0;
                var    visibilities = FitsIO.ReadVisibilities(Path.Combine(folder, "vis.fits"), uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

                var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
                var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);
                FFT.Shift(psf);

                var residualVis = data.visibilities;
                var dirtyGrid   = IDG.Grid(c, metadata, residualVis, data.uvw, data.frequencies);
                var dirtyImage  = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);

                var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
                var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
                var bMapCPU        = bMapCalculator.Convolve(dirtyImage);
                var bMapGPU        = bMapCalculator.Convolve(dirtyImage);
                var fastCD         = new FastSerialCD(totalSize, psf);
                var gpuCD          = new GPUSerialCD(totalSize, psf, 1000);
                var lambda         = 0.5f * fastCD.MaxLipschitz;
                var alpha          = 0.5f;

                var xCPU      = new float[gridSize, gridSize];
                var cpuResult = fastCD.Deconvolve(xCPU, bMapCPU, lambda, alpha, 10000, 1e-8f);
                FitsIO.Write(xCPU, "GPUSpeedup/cpuResult" + gridSize + ".fits");

                var xGPU      = new float[gridSize, gridSize];
                var gpuResult = gpuCD.Deconvolve(xGPU, bMapGPU, lambda, alpha, 10000, 1e-8f);
                FitsIO.Write(xCPU, "GPUSpeedup/gpuResult" + gridSize + ".fits");

                writer.WriteLine(gridSize + ";" + cpuResult.IterationCount + ";" + cpuResult.ElapsedTime.TotalSeconds + ";" + gpuResult.IterationCount + ";" + gpuResult.ElapsedTime.TotalSeconds);
                writer.Flush();
            }

            writer.Close();
        }
        private static float[,] CalculatePSF(Intracommunicator comm, GriddingConstants c, List <List <Subgrid> > metadata, double[,,] uvw, bool[,,] flags, double[] frequencies)
        {
            float[,] psf = null;
            var localGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf_total = comm.Reduce(localGrid, SequentialSum, 0);

            if (comm.Rank == 0)
            {
                psf = FFT.BackwardFloat(psf_total, c.VisibilitiesCount);
                FFT.Shift(psf);
            }
            comm.Broadcast(ref psf, 0);

            return(psf);
        }
Exemple #3
0
        public static void GenerateSerialCDExample(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var cellSize = 1.0 / 3600.0 * Math.PI / 180.0;
            var c        = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);
            var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));

            Directory.CreateDirectory(outputFolder);
            var reconstruction = new float[c.GridSize, c.GridSize];
            var residualVis    = data.Visibilities;
            var totalSize      = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.50f * fastCD.MaxLipschitz;
            var alpha          = 0.2f;

            for (int cycle = 0; cycle < 100; cycle++)
            {
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize);

                Tools.WriteToMeltCSV(Common.PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CD_" + cycle + ".csv"));
                Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients_CD_" + cycle + ".csv"));

                fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 4);

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }
        }
Exemple #4
0
        public static void Run()
        {
            //var frequencies = FitsIO.ReadFrequencies(@"C:\Users\Jon\github\p9-data\small\fits\simulation_point\freq.fits");
            //var uvw = FitsIO.ReadUVW(@"C:\Users\Jon\github\p9-data\small\fits\simulation_point\uvw.fits");
            var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var uvw         = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var flags       = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset

            var    visibilitiesCount = flags.Length;
            int    gridSize          = 64;
            int    subgridsize       = 16;
            int    kernelSize        = 8;
            int    max_nr_timesteps  = 64;
            double cellSize          = 2.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.Backward(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);
            var maxPsf = psf[gridSize / 2, gridSize / 2];

            for (int i = 0; i < psf.GetLength(0); i++)
            {
                for (int j = 0; j < psf.GetLength(1); j++)
                {
                    psf[i, j] = psf[i, j] / maxPsf;
                }
            }
            FitsIO.Write(psf, "psf.fits");

            var truth = new double[64, 64];

            //truth[40, 50] = 1.5;
            truth[0, 0] = 1.7;
            var dirty = ConvolveFFTPadded(truth, psf);

            FitsIO.Write(truth, "truth.fits");
            FitsIO.Write(dirty, "dirty.fits");

            var psf2 = ConvolveFFT(psf, psf);
            var b    = ConvolveFFTPadded(dirty, psf);
            var a    = psf2[gridSize / 2, gridSize / 2];

            /*
             * var integral = CalcPSf2Integral(psf);
             * FitsIO.Write(integral, "psfIntegral.fits");
             * var c0 = new double[64, 64];
             * var qY = 0;
             * var qX = 0;
             * c0[qY, qX] = 1.0;
             * c0 = Convolve(c0, psf);
             * FitsIO.Write(c0, "cx0.fits");
             * var cx = ConvolveFFT(c0, psf);
             * FitsIO.Write(cx, "cx1.fits");
             * var a2 = cx[qY, qX];
             * var res = QueryIntegral(integral, qY, qX);*/

            var x = new double[gridSize, gridSize];
            //Deconv(x, dirty, psf, psf2, a, 0.0);

            var dCopy = new double[gridSize, gridSize];

            for (int i = 0; i < b.GetLength(0); i++)
            {
                for (int j = 0; j < b.GetLength(1); j++)
                {
                    dCopy[i, j] = dirty[i, j];
                }
            }
            var x2        = new double[gridSize, gridSize];
            var converged = GreedyCD.Deconvolve2(x2, dirty, psf, 0.0, 1.0, 500, dCopy);
        }
Exemple #5
0
        public static void GeneratePSFs(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var c        = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory(outputFolder);

            var maskedPsf = Copy(psf);

            Tools.Mask(maskedPsf, 2);
            var reverseMasked = Copy(psf);

            Tools.ReverseMask(reverseMasked, 2);
            var psf2    = PSF.CalcPSFSquared(psf);
            var psf2Cut = PSF.CalcPSFSquared(maskedPsf);

            Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv"));
            Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv"));
            Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv"));
            Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv"));
            Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv"));

            var x = new float[c.GridSize, c.GridSize];

            x[10, 10] = 1.0f;

            var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));
            var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));

            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                {
                    var zeroPadded = convolver.Convolve(x);
                    var psf2Edge   = correlator.Convolve(zeroPadded);
                    Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv"));
                    Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv"));
                }
            convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0));
            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0)))
                Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv"));

            //================================================= Reconstruct =============================================================
            var totalSize      = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var reconstruction = new float[c.GridSize, c.GridSize];
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.50f * fastCD.MaxLipschitz;
            var alpha          = 0.2f;

            var residualVis = data.Visibilities;

            for (int cycle = 0; cycle < 5; cycle++)
            {
                Console.WriteLine("in cycle " + cycle);
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);

                var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize);

                if (cycle == 0)
                {
                    Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv"));
                    Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv"));
                }

                fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f);

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }

            //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits"));
            Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv"));
        }
Exemple #6
0
        public static void GenerateCLEANExample(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var cellSize = 1.0 / 3600.0 * Math.PI / 180.0;
            var c        = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory(outputFolder);
            var reconstruction = new float[c.GridSize, c.GridSize];

            var residualVis = data.Visibilities;

            for (int cycle = 0; cycle < 10; cycle++)
            {
                Console.WriteLine("in cycle " + cycle);
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                //FitsIO.Write(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".fits"));
                Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".csv"));

                var maxY = -1;
                var maxX = -1;
                var max  = 0.0f;
                for (int y = 0; y < dirtyImage.GetLength(0); y++)
                {
                    for (int x = 0; x < dirtyImage.GetLength(1); x++)
                    {
                        if (max < Math.Abs(dirtyImage[y, x]))
                        {
                            maxY = y;
                            maxX = x;
                            max  = Math.Abs(dirtyImage[y, x]);
                        }
                    }
                }

                //FitsIO.Write(reconstruction, Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".fits"));
                Tools.WriteToMeltCSV(PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".csv"));

                reconstruction[maxY, maxX] += 0.5f * dirtyImage[maxY, maxX];

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }

            var cleanbeam = new float[c.GridSize, c.GridSize];
            var x0        = c.GridSize / 2;
            var y0        = c.GridSize / 2;

            for (int y = 0; y < cleanbeam.GetLength(0); y++)
            {
                for (int x = 0; x < cleanbeam.GetLength(1); x++)
                {
                    cleanbeam[y, x] = (float)(1.0 * Math.Exp(-(Math.Pow(x0 - x, 2) / 16 + Math.Pow(y0 - y, 2) / 16)));
                }
            }

            FitsIO.Write(cleanbeam, Path.Combine(outputFolder, "clbeam.fits"));

            FFT.Shift(cleanbeam);
            var CL      = FFT.Forward(cleanbeam);
            var REC     = FFT.Forward(reconstruction);
            var CONF    = Common.Fourier2D.Multiply(REC, CL);
            var cleaned = FFT.BackwardFloat(CONF, reconstruction.Length);

            //FFT.Shift(cleaned);
            //FitsIO.Write(cleaned, Path.Combine(outputFolder, "rec_CLEAN.fits"));
            Tools.WriteToMeltCSV(PSF.Cut(cleaned), Path.Combine(outputFolder, "rec_CLEAN.csv"));
        }
Exemple #7
0
        public static void DebugILGPU()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            var    visibilitiesCount = visibilities.Length;
            int    gridSize          = 256;
            int    subgridsize       = 8;
            int    kernelSize        = 4;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.Backward(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            var psfCutDouble = CutImg(psf);
            var psfCut       = ToFloatImage(psfCutDouble);

            FitsIO.Write(psfCut, "psfCut.fits");


            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var imageSection   = new Rectangle(0, 128, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psfCut);

            fastCD.ResetLipschitzMap(ToFloatImage(psf));
            var gpuCD  = new GPUSerialCD(totalSize, psfCut, 100);
            var lambda = 0.5f * fastCD.MaxLipschitz;
            var alpha  = 0.8f;

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            /*var truth = new double[gridSize, gridSize];
             * truth[30, 30] = 1.0;
             * truth[35, 36] = 1.5;
             * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies);
             * visibilities = truthVis;
             * var residualVis = truthVis;*/
            for (int cycle = 0; cycle < 4; cycle++)
            {
                //FORWARD
                watchForward.Start();
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits");
                watchForward.Stop();

                //DECONVOLVE
                watchDeconv.Start();
                bMapCalculator.ConvolveInPlace(dirtyImage);
                FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits");
                //var result = fastCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);
                var result = gpuCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);

                if (result.Converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!!------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged----------------------");
                }
                FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits");
                FitsIO.Write(dirtyImage, "residualDebug_" + cycle + ".fits");
                watchDeconv.Stop();

                //BACKWARDS
                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();

                var hello = FFT.Forward(xImage, 1.0);
                hello = Common.Fourier2D.Multiply(hello, psfGrid);
                var hImg = FFT.Backward(hello, (double)(128 * 128));
                //FFT.Shift(hImg);
                FitsIO.Write(hImg, "modelDirty_FFT.fits");

                var imgRec = IDG.ToImage(c, metadata, modelVis, uvw, frequencies);
                FitsIO.Write(imgRec, "modelDirty" + cycle + ".fits");
            }
        }
Exemple #8
0
        public static void DebugSimulatedApprox()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            var    visibilitiesCount = visibilities.Length;
            int    gridSize          = 256;
            int    subgridsize       = 8;
            int    kernelSize        = 4;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);
            var psfCut = PSF.Cut(psf);

            FitsIO.Write(psfCut, "psfCut.fits");

            var random         = new Random(123);
            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psfCut);
            //fastCD.ResetAMap(psf);
            var lambda  = 0.5f * fastCD.MaxLipschitz;
            var alpha   = 0.8f;
            var approx  = new ApproxParallel();
            var approx2 = new ApproxFast(totalSize, psfCut, 4, 8, 0f, 0.25f, false, true);

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            /*var truth = new double[gridSize, gridSize];
             * truth[30, 30] = 1.0;
             * truth[35, 36] = 1.5;
             * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies);
             * visibilities = truthVis;
             * var residualVis = truthVis;*/
            var data = new ApproxFast.TestingData(new StreamWriter("approxConvergence.txt"));

            for (int cycle = 0; cycle < 4; cycle++)
            {
                //FORWARD
                watchForward.Start();
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits");
                watchForward.Stop();

                //DECONVOLVE
                watchDeconv.Start();
                //approx.ISTAStep(xImage, dirtyImage, psf, lambda, alpha);
                //FitsIO.Write(xImage, "xIsta.fits");
                //FitsIO.Write(dirtyImage, "dirtyFista.fits");
                //bMapCalculator.ConvolveInPlace(dirtyImage);
                //FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits");
                //var result = fastCD.Deconvolve(xImage, dirtyImage, 0.5f * fastCD.MaxLipschitz, 0.8f, 1000, 1e-4f);
                //var converged = approx.DeconvolveActiveSet(xImage, dirtyImage, psfCut, lambda, alpha, random, 8, 1, 1);
                //var converged = approx.DeconvolveGreedy(xImage, dirtyImage, psfCut, lambda, alpha, random, 4, 4, 500);
                //var converged = approx.DeconvolveApprox(xImage, dirtyImage, psfCut, lambda, alpha, random, 1, threads, 500, 1e-4f, cycle == 0);

                approx2.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, psf, lambda, alpha, random, 10, 1e-4f);


                if (data.converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!!------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged----------------------");
                }
                FitsIO.Write(xImage, "xImageApprox_" + cycle + ".fits");
                watchDeconv.Stop();

                //BACKWARDS
                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();
            }


            var dirtyGridCheck = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
            var dirtyCheck     = FFT.Backward(dirtyGridCheck, c.VisibilitiesCount);

            FFT.Shift(dirtyCheck);

            var l2Penalty      = Residuals.CalcPenalty(ToFloatImage(dirtyCheck));
            var elasticPenalty = ElasticNet.CalcPenalty(xImage, (float)lambda, (float)alpha);
            var sum            = l2Penalty + elasticPenalty;

            data.writer.Close();
        }