private static DirtyImage ForwardCalculateB(Intracommunicator comm, GriddingConstants c, List <List <Subgrid> > metadata, Complex[,,] visibilities, double[,,] uvw, double[] frequencies, Complex[,] PsfCorrelation, float[,] psfCut, float maxSidelobe, Stopwatch watchIdg) { Stopwatch another = new Stopwatch(); comm.Barrier(); if (comm.Rank == 0) { watchIdg.Start(); } var localGrid = IDG.Grid(c, metadata, visibilities, uvw, frequencies); float[,] image = null; float maxSideLobeLevel = 0.0f; var grid_total = comm.Reduce <Complex[, ]>(localGrid, SequentialSum, 0); if (comm.Rank == 0) { var dirtyImage = FFT.BackwardFloat(grid_total, c.VisibilitiesCount); FFT.Shift(dirtyImage); if (comm.Rank == 0) { FitsIO.Write(dirtyImage, "dirtyImage.fits"); } maxSideLobeLevel = maxSidelobe * Residuals.GetMax(dirtyImage); //remove spheroidal image = Residuals.CalcGradientMap(dirtyImage, PsfCorrelation, new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); watchIdg.Stop(); } comm.Broadcast(ref maxSideLobeLevel, 0); comm.Broadcast(ref image, 0); return(new DirtyImage(image, maxSideLobeLevel)); }
public static void Run() { var folder = @"C:\dev\GitHub\p9-data\small\fits\simulation_point\"; var data = DataLoading.SimulatedPoints.Load(folder); var gridSizes = new int[] { 256, 512, 1024, 2048, 4096 }; Directory.CreateDirectory("GPUSpeedup"); var writer = new StreamWriter("GPUSpeedup/GPUSpeedup.txt", false); writer.WriteLine("imgSize;iterCPU;timeCPU;iterGPU;timeGPU"); foreach (var gridSize in gridSizes) { var visibilitiesCount = data.visibilitiesCount; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = (1.0 * 256 / gridSize) / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, data.uvw, data.frequencies); var frequencies = FitsIO.ReadFrequencies(Path.Combine(folder, "freq.fits")); var uvw = FitsIO.ReadUVW(Path.Combine(folder, "uvw.fits")); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(Path.Combine(folder, "vis.fits"), uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var residualVis = data.visibilities; var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.uvw, data.frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))); var bMapCPU = bMapCalculator.Convolve(dirtyImage); var bMapGPU = bMapCalculator.Convolve(dirtyImage); var fastCD = new FastSerialCD(totalSize, psf); var gpuCD = new GPUSerialCD(totalSize, psf, 1000); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.5f; var xCPU = new float[gridSize, gridSize]; var cpuResult = fastCD.Deconvolve(xCPU, bMapCPU, lambda, alpha, 10000, 1e-8f); FitsIO.Write(xCPU, "GPUSpeedup/cpuResult" + gridSize + ".fits"); var xGPU = new float[gridSize, gridSize]; var gpuResult = gpuCD.Deconvolve(xGPU, bMapGPU, lambda, alpha, 10000, 1e-8f); FitsIO.Write(xCPU, "GPUSpeedup/gpuResult" + gridSize + ".fits"); writer.WriteLine(gridSize + ";" + cpuResult.IterationCount + ";" + cpuResult.ElapsedTime.TotalSeconds + ";" + gpuResult.IterationCount + ";" + gpuResult.ElapsedTime.TotalSeconds); writer.Flush(); } writer.Close(); }
public static void GenerateSerialCDExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; for (int cycle = 0; cycle < 100; cycle++) { var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); Tools.WriteToMeltCSV(Common.PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CD_" + cycle + ".csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients_CD_" + cycle + ".csv")); fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 4); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } }
public static void GeneratePSFs(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var c = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var maskedPsf = Copy(psf); Tools.Mask(maskedPsf, 2); var reverseMasked = Copy(psf); Tools.ReverseMask(reverseMasked, 2); var psf2 = PSF.CalcPSFSquared(psf); var psf2Cut = PSF.CalcPSFSquared(maskedPsf); Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv")); Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv")); Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv")); Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv")); Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv")); var x = new float[c.GridSize, c.GridSize]; x[10, 10] = 1.0f; var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) { var zeroPadded = convolver.Convolve(x); var psf2Edge = correlator.Convolve(zeroPadded); Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv")); Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv")); } convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0))) Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv")); //================================================= Reconstruct ============================================================= var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var reconstruction = new float[c.GridSize, c.GridSize]; var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 5; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); if (cycle == 0) { Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv")); } fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits")); Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv")); }
public static void GenerateCLEANExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 10; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); //FitsIO.Write(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".csv")); var maxY = -1; var maxX = -1; var max = 0.0f; for (int y = 0; y < dirtyImage.GetLength(0); y++) { for (int x = 0; x < dirtyImage.GetLength(1); x++) { if (max < Math.Abs(dirtyImage[y, x])) { maxY = y; maxX = x; max = Math.Abs(dirtyImage[y, x]); } } } //FitsIO.Write(reconstruction, Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".csv")); reconstruction[maxY, maxX] += 0.5f * dirtyImage[maxY, maxX]; FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } var cleanbeam = new float[c.GridSize, c.GridSize]; var x0 = c.GridSize / 2; var y0 = c.GridSize / 2; for (int y = 0; y < cleanbeam.GetLength(0); y++) { for (int x = 0; x < cleanbeam.GetLength(1); x++) { cleanbeam[y, x] = (float)(1.0 * Math.Exp(-(Math.Pow(x0 - x, 2) / 16 + Math.Pow(y0 - y, 2) / 16))); } } FitsIO.Write(cleanbeam, Path.Combine(outputFolder, "clbeam.fits")); FFT.Shift(cleanbeam); var CL = FFT.Forward(cleanbeam); var REC = FFT.Forward(reconstruction); var CONF = Common.Fourier2D.Multiply(REC, CL); var cleaned = FFT.BackwardFloat(CONF, reconstruction.Length); //FFT.Shift(cleaned); //FitsIO.Write(cleaned, Path.Combine(outputFolder, "rec_CLEAN.fits")); Tools.WriteToMeltCSV(PSF.Cut(cleaned), Path.Combine(outputFolder, "rec_CLEAN.csv")); }
/// <summary> /// Major cycle implemnentation for the parallel coordinate descent algorithm /// </summary> /// <param name="data"></param> /// <param name="c"></param> /// <param name="psfCutFactor"></param> /// <param name="maxMajorCycle"></param> /// <param name="maxMinorCycle"></param> /// <param name="lambda"></param> /// <param name="alpha"></param> /// <param name="deconvIterations"></param> /// <param name="deconvEpsilon"></param> public static void ReconstructPCDM(string obsName, MeasurementData data, GriddingConstants c, int psfCutFactor, int maxMajorCycle, int maxMinorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon) { var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfVis = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length]; for (int i = 0; i < data.Visibilities.GetLength(0); i++) { for (int j = 0; j < data.Visibilities.GetLength(1); j++) { for (int k = 0; k < data.Visibilities.GetLength(2); k++) { if (!data.Flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } Console.WriteLine("gridding psf"); var psfGrid = IDG.Grid(c, metadata, psfVis, data.UVW, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, psfCutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, psfCutFactor); var sidelobeHalf = PSF.CalcMaxSidelobe(psf, 2); var pcdm = new ParallelCoordinateDescent(totalSize, psfCut, Environment.ProcessorCount, 1000); using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, psf)) { var currentGCalculator = gCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambdaLipschitz = (float)(lambda * maxLipschitz); var lambdaTrue = (float)(lambda * PSF.CalcMaxLipschitz(psf)); var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; ParallelCoordinateDescent.PCDMStatistics lastResult = null; for (int cycle = 0; cycle < maxMajorCycle; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, obsName + "_dirty_pcdm_majorCycle" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var breakMajor = false; var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; var currentObjective = 0.0; var absMax = 0.0f; for (int minorCycle = 0; minorCycle < maxMinorCycle; minorCycle++) { Console.WriteLine("Beginning Minor Cycle " + minorCycle); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentGCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } currentObjective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); absMax = pcdm.GetAbsMax(xImage, bMap, lambdaTrue, alpha); if (absMax < MAJOR_EPSILON) { breakMajor = true; break; } lastResult = pcdm.Deconvolve(xImage, bMap, currentLambda, alpha, 40, deconvEpsilon); if (currentLambda == lambda | currentLambda == minLambda) { break; } var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } currentWatch.Stop(); totalWatch.Stop(); if (breakMajor) { break; } if (currentLambda == lambda & !switchedToOtherPsf) { pcdm.ResetAMap(psf); currentGCalculator = gCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; } FitsIO.Write(xImage, obsName + "_model_pcdm_majorCycle" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds); } }
public static void DebugILGPU() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.Backward(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var psfCutDouble = CutImg(psf); var psfCut = ToFloatImage(psfCutDouble); FitsIO.Write(psfCut, "psfCut.fits"); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var imageSection = new Rectangle(0, 128, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); fastCD.ResetLipschitzMap(ToFloatImage(psf)); var gpuCD = new GPUSerialCD(totalSize, psfCut, 100); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.8f; var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; /*var truth = new double[gridSize, gridSize]; * truth[30, 30] = 1.0; * truth[35, 36] = 1.5; * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies); * visibilities = truthVis; * var residualVis = truthVis;*/ for (int cycle = 0; cycle < 4; cycle++) { //FORWARD watchForward.Start(); var dirtyGrid = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits"); watchForward.Stop(); //DECONVOLVE watchDeconv.Start(); bMapCalculator.ConvolveInPlace(dirtyImage); FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits"); //var result = fastCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f); var result = gpuCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f); if (result.Converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits"); FitsIO.Write(dirtyImage, "residualDebug_" + cycle + ".fits"); watchDeconv.Stop(); //BACKWARDS watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); var hello = FFT.Forward(xImage, 1.0); hello = Common.Fourier2D.Multiply(hello, psfGrid); var hImg = FFT.Backward(hello, (double)(128 * 128)); //FFT.Shift(hImg); FitsIO.Write(hImg, "modelDirty_FFT.fits"); var imgRec = IDG.ToImage(c, metadata, modelVis, uvw, frequencies); FitsIO.Write(imgRec, "modelDirty" + cycle + ".fits"); } }
public static void DebugSimulatedApprox() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var psfCut = PSF.Cut(psf); FitsIO.Write(psfCut, "psfCut.fits"); var random = new Random(123); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); //fastCD.ResetAMap(psf); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.8f; var approx = new ApproxParallel(); var approx2 = new ApproxFast(totalSize, psfCut, 4, 8, 0f, 0.25f, false, true); var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; /*var truth = new double[gridSize, gridSize]; * truth[30, 30] = 1.0; * truth[35, 36] = 1.5; * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies); * visibilities = truthVis; * var residualVis = truthVis;*/ var data = new ApproxFast.TestingData(new StreamWriter("approxConvergence.txt")); for (int cycle = 0; cycle < 4; cycle++) { //FORWARD watchForward.Start(); var dirtyGrid = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits"); watchForward.Stop(); //DECONVOLVE watchDeconv.Start(); //approx.ISTAStep(xImage, dirtyImage, psf, lambda, alpha); //FitsIO.Write(xImage, "xIsta.fits"); //FitsIO.Write(dirtyImage, "dirtyFista.fits"); //bMapCalculator.ConvolveInPlace(dirtyImage); //FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits"); //var result = fastCD.Deconvolve(xImage, dirtyImage, 0.5f * fastCD.MaxLipschitz, 0.8f, 1000, 1e-4f); //var converged = approx.DeconvolveActiveSet(xImage, dirtyImage, psfCut, lambda, alpha, random, 8, 1, 1); //var converged = approx.DeconvolveGreedy(xImage, dirtyImage, psfCut, lambda, alpha, random, 4, 4, 500); //var converged = approx.DeconvolveApprox(xImage, dirtyImage, psfCut, lambda, alpha, random, 1, threads, 500, 1e-4f, cycle == 0); approx2.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, psf, lambda, alpha, random, 10, 1e-4f); if (data.converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } FitsIO.Write(xImage, "xImageApprox_" + cycle + ".fits"); watchDeconv.Stop(); //BACKWARDS watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } var dirtyGridCheck = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyCheck = FFT.Backward(dirtyGridCheck, c.VisibilitiesCount); FFT.Shift(dirtyCheck); var l2Penalty = Residuals.CalcPenalty(ToFloatImage(dirtyCheck)); var elasticPenalty = ElasticNet.CalcPenalty(xImage, (float)lambda, (float)alpha); var sum = l2Penalty + elasticPenalty; data.writer.Close(); }