private static DirtyImage ForwardCalculateB(Intracommunicator comm, GriddingConstants c, List <List <Subgrid> > metadata, Complex[,,] visibilities, double[,,] uvw, double[] frequencies, Complex[,] PsfCorrelation, float[,] psfCut, float maxSidelobe, Stopwatch watchIdg)
        {
            Stopwatch another = new Stopwatch();

            comm.Barrier();
            if (comm.Rank == 0)
            {
                watchIdg.Start();
            }

            var localGrid = IDG.Grid(c, metadata, visibilities, uvw, frequencies);

            float[,] image = null;
            float maxSideLobeLevel = 0.0f;
            var   grid_total       = comm.Reduce <Complex[, ]>(localGrid, SequentialSum, 0);

            if (comm.Rank == 0)
            {
                var dirtyImage = FFT.BackwardFloat(grid_total, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                if (comm.Rank == 0)
                {
                    FitsIO.Write(dirtyImage, "dirtyImage.fits");
                }
                maxSideLobeLevel = maxSidelobe * Residuals.GetMax(dirtyImage);
                //remove spheroidal

                image = Residuals.CalcGradientMap(dirtyImage, PsfCorrelation, new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
                watchIdg.Stop();
            }
            comm.Broadcast(ref maxSideLobeLevel, 0);
            comm.Broadcast(ref image, 0);
            return(new DirtyImage(image, maxSideLobeLevel));
        }
        public static void Run()
        {
            var folder    = @"C:\dev\GitHub\p9-data\small\fits\simulation_point\";
            var data      = DataLoading.SimulatedPoints.Load(folder);
            var gridSizes = new int[] { 256, 512, 1024, 2048, 4096 };

            Directory.CreateDirectory("GPUSpeedup");
            var writer = new StreamWriter("GPUSpeedup/GPUSpeedup.txt", false);

            writer.WriteLine("imgSize;iterCPU;timeCPU;iterGPU;timeGPU");
            foreach (var gridSize in gridSizes)
            {
                var    visibilitiesCount = data.visibilitiesCount;
                int    subgridsize       = 8;
                int    kernelSize        = 4;
                int    max_nr_timesteps  = 1024;
                double cellSize          = (1.0 * 256 / gridSize) / 3600.0 * Math.PI / 180.0;
                var    c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);
                var    metadata = Partitioner.CreatePartition(c, data.uvw, data.frequencies);

                var    frequencies  = FitsIO.ReadFrequencies(Path.Combine(folder, "freq.fits"));
                var    uvw          = FitsIO.ReadUVW(Path.Combine(folder, "uvw.fits"));
                var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length];
                double norm         = 2.0;
                var    visibilities = FitsIO.ReadVisibilities(Path.Combine(folder, "vis.fits"), uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

                var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
                var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);
                FFT.Shift(psf);

                var residualVis = data.visibilities;
                var dirtyGrid   = IDG.Grid(c, metadata, residualVis, data.uvw, data.frequencies);
                var dirtyImage  = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);

                var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
                var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
                var bMapCPU        = bMapCalculator.Convolve(dirtyImage);
                var bMapGPU        = bMapCalculator.Convolve(dirtyImage);
                var fastCD         = new FastSerialCD(totalSize, psf);
                var gpuCD          = new GPUSerialCD(totalSize, psf, 1000);
                var lambda         = 0.5f * fastCD.MaxLipschitz;
                var alpha          = 0.5f;

                var xCPU      = new float[gridSize, gridSize];
                var cpuResult = fastCD.Deconvolve(xCPU, bMapCPU, lambda, alpha, 10000, 1e-8f);
                FitsIO.Write(xCPU, "GPUSpeedup/cpuResult" + gridSize + ".fits");

                var xGPU      = new float[gridSize, gridSize];
                var gpuResult = gpuCD.Deconvolve(xGPU, bMapGPU, lambda, alpha, 10000, 1e-8f);
                FitsIO.Write(xCPU, "GPUSpeedup/gpuResult" + gridSize + ".fits");

                writer.WriteLine(gridSize + ";" + cpuResult.IterationCount + ";" + cpuResult.ElapsedTime.TotalSeconds + ";" + gpuResult.IterationCount + ";" + gpuResult.ElapsedTime.TotalSeconds);
                writer.Flush();
            }

            writer.Close();
        }
Esempio n. 3
0
        public static void GenerateSerialCDExample(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var cellSize = 1.0 / 3600.0 * Math.PI / 180.0;
            var c        = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);
            var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));

            Directory.CreateDirectory(outputFolder);
            var reconstruction = new float[c.GridSize, c.GridSize];
            var residualVis    = data.Visibilities;
            var totalSize      = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.50f * fastCD.MaxLipschitz;
            var alpha          = 0.2f;

            for (int cycle = 0; cycle < 100; cycle++)
            {
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize);

                Tools.WriteToMeltCSV(Common.PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CD_" + cycle + ".csv"));
                Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients_CD_" + cycle + ".csv"));

                fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 4);

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }
        }
Esempio n. 4
0
        public static void GeneratePSFs(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var c        = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory(outputFolder);

            var maskedPsf = Copy(psf);

            Tools.Mask(maskedPsf, 2);
            var reverseMasked = Copy(psf);

            Tools.ReverseMask(reverseMasked, 2);
            var psf2    = PSF.CalcPSFSquared(psf);
            var psf2Cut = PSF.CalcPSFSquared(maskedPsf);

            Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv"));
            Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv"));
            Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv"));
            Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv"));
            Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv"));

            var x = new float[c.GridSize, c.GridSize];

            x[10, 10] = 1.0f;

            var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));
            var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));

            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                {
                    var zeroPadded = convolver.Convolve(x);
                    var psf2Edge   = correlator.Convolve(zeroPadded);
                    Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv"));
                    Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv"));
                }
            convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0));
            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0)))
                Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv"));

            //================================================= Reconstruct =============================================================
            var totalSize      = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var reconstruction = new float[c.GridSize, c.GridSize];
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.50f * fastCD.MaxLipschitz;
            var alpha          = 0.2f;

            var residualVis = data.Visibilities;

            for (int cycle = 0; cycle < 5; cycle++)
            {
                Console.WriteLine("in cycle " + cycle);
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);

                var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize);

                if (cycle == 0)
                {
                    Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv"));
                    Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv"));
                }

                fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f);

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }

            //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits"));
            Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv"));
        }
Esempio n. 5
0
        public static void GenerateCLEANExample(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var cellSize = 1.0 / 3600.0 * Math.PI / 180.0;
            var c        = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory(outputFolder);
            var reconstruction = new float[c.GridSize, c.GridSize];

            var residualVis = data.Visibilities;

            for (int cycle = 0; cycle < 10; cycle++)
            {
                Console.WriteLine("in cycle " + cycle);
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                //FitsIO.Write(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".fits"));
                Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".csv"));

                var maxY = -1;
                var maxX = -1;
                var max  = 0.0f;
                for (int y = 0; y < dirtyImage.GetLength(0); y++)
                {
                    for (int x = 0; x < dirtyImage.GetLength(1); x++)
                    {
                        if (max < Math.Abs(dirtyImage[y, x]))
                        {
                            maxY = y;
                            maxX = x;
                            max  = Math.Abs(dirtyImage[y, x]);
                        }
                    }
                }

                //FitsIO.Write(reconstruction, Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".fits"));
                Tools.WriteToMeltCSV(PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".csv"));

                reconstruction[maxY, maxX] += 0.5f * dirtyImage[maxY, maxX];

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }

            var cleanbeam = new float[c.GridSize, c.GridSize];
            var x0        = c.GridSize / 2;
            var y0        = c.GridSize / 2;

            for (int y = 0; y < cleanbeam.GetLength(0); y++)
            {
                for (int x = 0; x < cleanbeam.GetLength(1); x++)
                {
                    cleanbeam[y, x] = (float)(1.0 * Math.Exp(-(Math.Pow(x0 - x, 2) / 16 + Math.Pow(y0 - y, 2) / 16)));
                }
            }

            FitsIO.Write(cleanbeam, Path.Combine(outputFolder, "clbeam.fits"));

            FFT.Shift(cleanbeam);
            var CL      = FFT.Forward(cleanbeam);
            var REC     = FFT.Forward(reconstruction);
            var CONF    = Common.Fourier2D.Multiply(REC, CL);
            var cleaned = FFT.BackwardFloat(CONF, reconstruction.Length);

            //FFT.Shift(cleaned);
            //FitsIO.Write(cleaned, Path.Combine(outputFolder, "rec_CLEAN.fits"));
            Tools.WriteToMeltCSV(PSF.Cut(cleaned), Path.Combine(outputFolder, "rec_CLEAN.csv"));
        }
Esempio n. 6
0
        /// <summary>
        /// Major cycle implemnentation for the parallel coordinate descent algorithm
        /// </summary>
        /// <param name="data"></param>
        /// <param name="c"></param>
        /// <param name="psfCutFactor"></param>
        /// <param name="maxMajorCycle"></param>
        /// <param name="maxMinorCycle"></param>
        /// <param name="lambda"></param>
        /// <param name="alpha"></param>
        /// <param name="deconvIterations"></param>
        /// <param name="deconvEpsilon"></param>
        public static void ReconstructPCDM(string obsName, MeasurementData data, GriddingConstants c, int psfCutFactor, int maxMajorCycle, int maxMinorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon)
        {
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);
            var psfVis   = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length];

            for (int i = 0; i < data.Visibilities.GetLength(0); i++)
            {
                for (int j = 0; j < data.Visibilities.GetLength(1); j++)
                {
                    for (int k = 0; k < data.Visibilities.GetLength(2); k++)
                    {
                        if (!data.Flags[i, j, k])
                        {
                            psfVis[i, j, k] = new Complex(1.0, 0);
                        }
                        else
                        {
                            psfVis[i, j, k] = new Complex(0, 0);
                        }
                    }
                }
            }

            Console.WriteLine("gridding psf");
            var psfGrid = IDG.Grid(c, metadata, psfVis, data.UVW, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            var totalWatch   = new Stopwatch();
            var currentWatch = new Stopwatch();

            var totalSize    = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var psfCut       = PSF.Cut(psf, psfCutFactor);
            var maxSidelobe  = PSF.CalcMaxSidelobe(psf, psfCutFactor);
            var sidelobeHalf = PSF.CalcMaxSidelobe(psf, 2);

            var pcdm = new ParallelCoordinateDescent(totalSize, psfCut, Environment.ProcessorCount, 1000);

            using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))))
                using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))))
                    using (var residualsConvolver = new PaddedConvolver(totalSize, psf))
                    {
                        var currentGCalculator = gCalculator;

                        var maxLipschitz    = PSF.CalcMaxLipschitz(psfCut);
                        var lambdaLipschitz = (float)(lambda * maxLipschitz);
                        var lambdaTrue      = (float)(lambda * PSF.CalcMaxLipschitz(psf));

                        var switchedToOtherPsf = false;
                        var xImage             = new float[c.GridSize, c.GridSize];
                        var residualVis        = data.Visibilities;
                        ParallelCoordinateDescent.PCDMStatistics lastResult = null;
                        for (int cycle = 0; cycle < maxMajorCycle; cycle++)
                        {
                            Console.WriteLine("Beginning Major cycle " + cycle);
                            var dirtyGrid  = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies);
                            var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount);
                            FFT.Shift(dirtyImage);
                            FitsIO.Write(dirtyImage, obsName + "_dirty_pcdm_majorCycle" + cycle + ".fits");

                            currentWatch.Restart();
                            totalWatch.Start();

                            var breakMajor       = false;
                            var minLambda        = 0.0f;
                            var dirtyCopy        = Copy(dirtyImage);
                            var xCopy            = Copy(xImage);
                            var currentLambda    = 0f;
                            var currentObjective = 0.0;
                            var absMax           = 0.0f;
                            for (int minorCycle = 0; minorCycle < maxMinorCycle; minorCycle++)
                            {
                                Console.WriteLine("Beginning Minor Cycle " + minorCycle);
                                var maxDirty         = Residuals.GetMax(dirtyImage);
                                var bMap             = currentGCalculator.Convolve(dirtyImage);
                                var maxB             = Residuals.GetMax(bMap);
                                var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f);
                                var currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                                currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz);

                                if (minorCycle == 0)
                                {
                                    minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha);
                                }
                                if (currentLambda < minLambda)
                                {
                                    currentLambda = minLambda;
                                }
                                currentObjective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha);
                                absMax           = pcdm.GetAbsMax(xImage, bMap, lambdaTrue, alpha);
                                if (absMax < MAJOR_EPSILON)
                                {
                                    breakMajor = true;
                                    break;
                                }

                                lastResult = pcdm.Deconvolve(xImage, bMap, currentLambda, alpha, 40, deconvEpsilon);

                                if (currentLambda == lambda | currentLambda == minLambda)
                                {
                                    break;
                                }

                                var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)];
                                Parallel.For(0, xCopy.GetLength(0), (i) =>
                                {
                                    for (int j = 0; j < xCopy.GetLength(1); j++)
                                    {
                                        residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j];
                                    }
                                });
                                residualsConvolver.ConvolveInPlace(residualsUpdate);
                                Parallel.For(0, xCopy.GetLength(0), (i) =>
                                {
                                    for (int j = 0; j < xCopy.GetLength(1); j++)
                                    {
                                        dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j];
                                    }
                                });
                            }

                            currentWatch.Stop();
                            totalWatch.Stop();

                            if (breakMajor)
                            {
                                break;
                            }
                            if (currentLambda == lambda & !switchedToOtherPsf)
                            {
                                pcdm.ResetAMap(psf);
                                currentGCalculator = gCalculator2;
                                lambda             = lambdaTrue;
                                switchedToOtherPsf = true;
                            }

                            FitsIO.Write(xImage, obsName + "_model_pcdm_majorCycle" + cycle + ".fits");

                            FFT.Shift(xImage);
                            var xGrid = FFT.Forward(xImage);
                            FFT.Shift(xImage);
                            var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies);
                            residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
                        }

                        Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds);
                    }
        }
Esempio n. 7
0
        public static void DebugILGPU()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            var    visibilitiesCount = visibilities.Length;
            int    gridSize          = 256;
            int    subgridsize       = 8;
            int    kernelSize        = 4;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.Backward(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            var psfCutDouble = CutImg(psf);
            var psfCut       = ToFloatImage(psfCutDouble);

            FitsIO.Write(psfCut, "psfCut.fits");


            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var imageSection   = new Rectangle(0, 128, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psfCut);

            fastCD.ResetLipschitzMap(ToFloatImage(psf));
            var gpuCD  = new GPUSerialCD(totalSize, psfCut, 100);
            var lambda = 0.5f * fastCD.MaxLipschitz;
            var alpha  = 0.8f;

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            /*var truth = new double[gridSize, gridSize];
             * truth[30, 30] = 1.0;
             * truth[35, 36] = 1.5;
             * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies);
             * visibilities = truthVis;
             * var residualVis = truthVis;*/
            for (int cycle = 0; cycle < 4; cycle++)
            {
                //FORWARD
                watchForward.Start();
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits");
                watchForward.Stop();

                //DECONVOLVE
                watchDeconv.Start();
                bMapCalculator.ConvolveInPlace(dirtyImage);
                FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits");
                //var result = fastCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);
                var result = gpuCD.Deconvolve(xImage, dirtyImage, lambda, alpha, 1000, 1e-4f);

                if (result.Converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!!------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged----------------------");
                }
                FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits");
                FitsIO.Write(dirtyImage, "residualDebug_" + cycle + ".fits");
                watchDeconv.Stop();

                //BACKWARDS
                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();

                var hello = FFT.Forward(xImage, 1.0);
                hello = Common.Fourier2D.Multiply(hello, psfGrid);
                var hImg = FFT.Backward(hello, (double)(128 * 128));
                //FFT.Shift(hImg);
                FitsIO.Write(hImg, "modelDirty_FFT.fits");

                var imgRec = IDG.ToImage(c, metadata, modelVis, uvw, frequencies);
                FitsIO.Write(imgRec, "modelDirty" + cycle + ".fits");
            }
        }
Esempio n. 8
0
        public static void DebugSimulatedApprox()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits");
            var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            var    visibilitiesCount = visibilities.Length;
            int    gridSize          = 256;
            int    subgridsize       = 8;
            int    kernelSize        = 4;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.0 / 3600.0 * PI / 180.0;
            var    c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);

            var watchTotal     = new Stopwatch();
            var watchForward   = new Stopwatch();
            var watchBackwards = new Stopwatch();
            var watchDeconv    = new Stopwatch();

            watchTotal.Start();
            var metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);
            var psfCut = PSF.Cut(psf);

            FitsIO.Write(psfCut, "psfCut.fits");

            var random         = new Random(123);
            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psfCut);
            //fastCD.ResetAMap(psf);
            var lambda  = 0.5f * fastCD.MaxLipschitz;
            var alpha   = 0.8f;
            var approx  = new ApproxParallel();
            var approx2 = new ApproxFast(totalSize, psfCut, 4, 8, 0f, 0.25f, false, true);

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            /*var truth = new double[gridSize, gridSize];
             * truth[30, 30] = 1.0;
             * truth[35, 36] = 1.5;
             * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies);
             * visibilities = truthVis;
             * var residualVis = truthVis;*/
            var data = new ApproxFast.TestingData(new StreamWriter("approxConvergence.txt"));

            for (int cycle = 0; cycle < 4; cycle++)
            {
                //FORWARD
                watchForward.Start();
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits");
                watchForward.Stop();

                //DECONVOLVE
                watchDeconv.Start();
                //approx.ISTAStep(xImage, dirtyImage, psf, lambda, alpha);
                //FitsIO.Write(xImage, "xIsta.fits");
                //FitsIO.Write(dirtyImage, "dirtyFista.fits");
                //bMapCalculator.ConvolveInPlace(dirtyImage);
                //FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits");
                //var result = fastCD.Deconvolve(xImage, dirtyImage, 0.5f * fastCD.MaxLipschitz, 0.8f, 1000, 1e-4f);
                //var converged = approx.DeconvolveActiveSet(xImage, dirtyImage, psfCut, lambda, alpha, random, 8, 1, 1);
                //var converged = approx.DeconvolveGreedy(xImage, dirtyImage, psfCut, lambda, alpha, random, 4, 4, 500);
                //var converged = approx.DeconvolveApprox(xImage, dirtyImage, psfCut, lambda, alpha, random, 1, threads, 500, 1e-4f, cycle == 0);

                approx2.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, psf, lambda, alpha, random, 10, 1e-4f);


                if (data.converged)
                {
                    Console.WriteLine("-----------------------------CONVERGED!!!!------------------------");
                }
                else
                {
                    Console.WriteLine("-------------------------------not converged----------------------");
                }
                FitsIO.Write(xImage, "xImageApprox_" + cycle + ".fits");
                watchDeconv.Stop();

                //BACKWARDS
                watchBackwards.Start();
                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies);
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
                watchBackwards.Stop();
            }


            var dirtyGridCheck = IDG.Grid(c, metadata, residualVis, uvw, frequencies);
            var dirtyCheck     = FFT.Backward(dirtyGridCheck, c.VisibilitiesCount);

            FFT.Shift(dirtyCheck);

            var l2Penalty      = Residuals.CalcPenalty(ToFloatImage(dirtyCheck));
            var elasticPenalty = ElasticNet.CalcPenalty(xImage, (float)lambda, (float)alpha);
            var sum            = l2Penalty + elasticPenalty;

            data.writer.Close();
        }