public void ExampleTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // We'll use a simple XOR function as input. 

            double[][] inputs =
            { 
                new double[] { 0, 0 }, // 0 xor 0
                new double[] { 0, 1 }, // 0 xor 1
                new double[] { 1, 0 }, // 1 xor 0
                new double[] { 1, 1 }, // 1 xor 1
            };

            // XOR output, corresponding to the input.
            double[][] outputs = 
            {
                new double[] { 0 }, // 0 xor 0 = 0
                new double[] { 1 }, // 0 xor 1 = 1
                new double[] { 1 }, // 1 xor 0 = 1
                new double[] { 0 }, // 1 xor 1 = 0
            };

            // Setup the deep belief network (2 inputs, 3 hidden, 1 output)
            DeepBeliefNetwork network = new DeepBeliefNetwork(2, 3, 1);

            // Initialize the network with Gaussian weights
            new GaussianWeights(network, 0.1).Randomize();

            // Update the visible layer with the new weights
            network.UpdateVisibleWeights();


            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };



            // Unsupervised learning on each hidden layer, except for the output.
            for (int i = 0; i < network.Layers.Length - 1; i++)
            {
                teacher.LayerIndex = i;

                // Compute the learning data with should be used
                var layerInput = teacher.GetLayerInput(inputs);

                // Train the layer iteratively
                for (int j = 0; j < 5000; j++)
                    teacher.RunEpoch(layerInput);
            }



            // Supervised learning on entire network, to provide output classification.
            var backpropagation = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 5000; i++)
                backpropagation.RunEpoch(inputs, outputs);


            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(inputs[i]);
                double outputResult = outputValues.First() >= 0.5 ? 1 : 0;

                if (outputResult == outputs[i].First())
                {
                    correct++;
                }
            }

            Assert.AreEqual(4, correct);
        }
Example #2
0
        public void StartProcessing()
        {
            _isNeedStop       = false;
            SigmoidAlphaValue = viewModel.SigmoidsAlpha;
            LearningRate      = viewModel.LearningRate;
            Momentum          = viewModel.Momentum;

            var lines = File.ReadAllLines(viewModel.TrainingFilePath);

            // Initialize input and output values
            var dataset = CsvConverter.ToDouble(lines);

            // Layers (without input layer, contains output layer)
            int[] layers = { 20, dataset.Outputs[0].Length };

            // Create perceptron
            Network = new ActivationNetwork(new SigmoidFunction(SigmoidAlphaValue), dataset.Inputs[0].Length, layers);

            // Create teacher
            var teacher = new BackPropagationLearning(Network)
            {
                LearningRate = LearningRate,
                Momentum     = Momentum
            };

            int iteration = 1;

            try
            {
                List <double> errorsList = new List <double>();

                while (!_isNeedStop)
                {
                    // run epoch of learning procedure
                    double error = teacher.RunEpoch(dataset.Inputs, dataset.Outputs);
                    errorsList.Add(error);

                    // show current iteration & error
                    viewModel.Epoches      = iteration;
                    viewModel.AverageError = error;

                    iteration++;

                    // check if we need to stop
                    if (error <= viewModel.LearningErrorLimit)
                    {
                        break;
                    }

                    if (iteration > viewModel.EpochesLimit && viewModel.EpochesLimit > 0)
                    {
                        break;
                    }
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.ToString());
            }
        }
Example #3
0
        private void TrainNeuralNetwork()
        {
            Debug.WriteLine("MyNN: Learning Started");
            m_BPLearning = new BackPropagationLearning(m_network, m_learningRate, m_momentum, m_goal);
            double[][] input;
            double[][] output;
            int        maxEpochs = 500;

            CreateInputOutput(out input, out output);
            if (input == null && output == null)
            {
                return; //network is too small (needs to be recreated)
            }
            double error = m_BPLearning.Train(input, output, ref maxEpochs);

            Debug.WriteLine(string.Format("MyNN trained: {0} epochs, {1} error", maxEpochs, error));
            if (m_saveIsRequired)
            {
                m_saveIsRequired = false;
                FileOptions.SaveTrainingSet(m_curveSets);
                m_curveSets = null;
                FileOptions.SaveNeuralNetwork(m_network);
            }

            OnNetworkLearnt(error, maxEpochs);
        }
Example #4
0
        public Tuple <double, TimeSpan> Train(double[][] inputs, double[][] outputs)
        {
            Network = new ActivationNetwork(new BipolarSigmoidFunction(SigmoidAlphaValue), NeuronsInFirstLayer, NeuronsInHiddenLayer, 1);

            BackPropagationLearning teacher = new BackPropagationLearning(Network);

            teacher.LearningRate = LearningRate;

            Network.Randomize();

            var    sw       = Stopwatch.StartNew();
            double error    = double.PositiveInfinity;
            double previous = double.PositiveInfinity;

            for (int i = 1; i <= EpochCount; i++)
            {
                error = teacher.RunEpoch(inputs, outputs);

                if (error == 0 || previous < error)
                {
                    break;
                }

                previous = error;

                // Console.WriteLine(String.Format("Epoch={0} Error={1}", i, error));
            }

            sw.Stop();

            return(Tuple.Create(error, sw.Elapsed));
        }
Example #5
0
        public int trainingNeuron()
        {
            //inputData = inputList.ToArray();
            //outputData = outputList.ToArray();
            network = new ActivationNetwork(
                activateFunction, inputData[0].Length, inputData[0].Length * 2, outputData[0].Length);

            BackPropagationLearning teacher = new BackPropagationLearning(network);

            int  iterationsCount = 0;
            bool flag            = true;

            while (iterations != 0 && iterationsCount < iterations && flag)
            {
                flag = false;
                teacher.RunEpoch(inputData, outputData);

                for (int i = 0; i < inputData.Length && !flag; i++)
                {
                    if (!CompareOutput(outputData[i], ValidateOutput(network.Compute(inputData[i]))))
                    {
                        flag = true;
                    }
                }
                iterationsCount++;
                if (!flag)
                {
                    break;
                }
            }
            return(iterationsCount);
        }
Example #6
0
        public void BackLearning()
        {
            double[][] input = new double[1][]
            {
                new double[] { 0, 0, 0, 0, 0, 0, 0, 0, 0 }
            };

            double[][] output = new double[4][]
            {
                new double[] { 0 }, new double[] { 1 },
                new double[] { 1 }, new double[] { 0 }
            };

            ActivationNetwork network = new ActivationNetwork(new SigmoidFunction(2),
                                                              9,  // two inputs in the network
                                                              2,  // two neurons in the first layer
                                                              1); // one neuron in the second layer
            //DistanceNetwork
            // create teacher
            BackPropagationLearning teacher = new BackPropagationLearning(network);

            var needToStop = false;

            while (!needToStop)
            {
                // run epoch of learning procedure
                //double error = teacher.RunEpoch(input, output);
                // check error value to see if we need to stop
                // ...
            }
        }
Example #7
0
        Network BuildApproximator(Track[] tracks)
        {
            const int    Epochs = 10000;
            const int    ProgressReportFrequency = Epochs / 20;
            const double TrainingSetRatio        = 0.4;

            var ann     = new ActivationNetwork(new SigmoidFunction(), AnnInput.InputCount, 7, 1);
            var teacher = new BackPropagationLearning(ann)
            {
                Momentum = 0.4
            };

            var trainingSet = BuildTrainingSet(tracks.Choice(TrainingSetRatio));

            var inputList  = trainingSet.Select(x => (double[])x.Input).ToArray();
            var outputList = trainingSet.Select(x => new[] { x.Output }).ToArray();

            Console.WriteLine("Training...");
            for (int i = 0; i < Epochs; i++)
            {
                teacher.LearningRate = Math.Pow(i, -1 / 3.0);
                var avErr = teacher.RunEpoch(inputList, outputList);                // / inputList.Length;
                if (i % ProgressReportFrequency == 0)
                {
                    Console.WriteLine(avErr);
                }
                if (avErr < 1)
                {
                    break;
                }
            }
            return(ann);
        }
Example #8
0
        public void TestMethod1()
        {
            double sigmoidAlphaValue = 3;

            List <double[]> input = new List <double[]>();

            input.Add(new double[] { 0.2 });
            input.Add(new double[] { 0.4 });
            input.Add(new double[] { 0.6 });
            input.Add(new double[] { 0.8 });
            input.Add(new double[] { 1 });

            List <double[]> output = new List <double[]>();

            output.Add(new double[] { 0.1 });
            output.Add(new double[] { 0.4 });
            output.Add(new double[] { 0.6 });
            output.Add(new double[] { 0.75 });
            output.Add(new double[] { 0.81 });

            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(sigmoidAlphaValue),
                1, 1, 1);

            BackPropagationLearning teacher = new BackPropagationLearning(network);

            teacher.LearningRate = 0.1;
            teacher.Momentum     = 0;

            while (true)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(input.ToArray(), output.ToArray()) / input.Count;
            }
        }
        private void CreateNetwork()
        {
            network = new ActivationNetwork(
                new BipolarSigmoidFunction(alfa),    //aktivasyon fonksiyonu
                inputSayisi,                         //input sayısı
                gizliKatmanSayisi,                   //gizli katman sayısı
                cikisSayisi                          //çıkış katmanı sayısı
                );

            BackPropagationLearning backprob = new BackPropagationLearning(network);

            backprob.LearningRate = 0.1;
            backprob.Momentum     = 0.0;

            int iterasyon = 1;

            while (!dongu)
            {
                double hata = backprob.RunEpoch(_inputData, _outputData);
                iterasyon++;

                if (iterasyon > 1000)
                // || hata < 0.0008
                {
                    break;
                }
            }
            MessageBox.Show("Öneriler Hesaplandı");
        }
Example #10
0
        public double CheckAccuracy(double lr, double m, int neurons)
        {
            double accuracy = 0;

            for (int k = 0; k < Folds; k++)
            {
                var network = new ActivationNetwork(new SigmoidFunction(), Data.FeatureCount, new int[] { neurons, 1 });
                var teacher = new BackPropagationLearning(network);
                teacher.LearningRate = lr;
                teacher.Momentum     = m;
                var needToStop = false;
                int epochCount = 0;
                while (!needToStop)
                {
                    double error = teacher.RunEpoch(TrainInput[k], TrainOutput[k]);
                    epochCount++;
                    if (epochCount > 5000 || error < 0.01)
                    {
                        needToStop = true;
                    }
                }
                int correct = 0;
                for (int i = 0; i < TestInput[k].Length; i++)
                {
                    var label = Math.Round(network.Compute(TestInput[k][i])[0]);
                    if (label == (TestOutput[k][i][0]))
                    {
                        correct++;
                    }
                }
                accuracy += (double)correct / (TestInput[k].Length);
            }

            return(accuracy / Folds);
        }
Example #11
0
 public void load_button_Click(object sender, EventArgs e)
 {
     if (csv_file == "")
     {
         content_box.Text += "Data set not yet selected!\r\n";
     }
     else
     {
         //example input:15,15,15,
         String   nodes_str     = nodes.Text;
         String[] nodes_str_arr = nodes_str.Split(',');
         int[]    n             = new int[nodes_str_arr.Length + 1];
         for (int index = 0; index < nodes_str_arr.Length; index++)
         {
             n[index] = Convert.ToInt32(nodes_str_arr[index]);
         }
         //output layer is fixed(6)
         n[nodes_str_arr.Length] = 6;
         network      = new ActivationNetwork(new BipolarSigmoidFunction(2), 30, n);
         bp           = new BackPropagationLearning(network);
         dt           = Csv2DataTable(this.csv_file, 0);
         train_number = Convert.ToInt32(TrainingRows.Text);
         test_number  = Convert.ToInt32(TestRows.Text);
         epoch        = Convert.ToInt32(Epoch.Text);
         Train();
     }
 }
Example #12
0
        void Train()
        {
            LoadTrainData();

            // prepare learning data
            double[][] input  = new double[sampleCount][];
            double[][] output = new double[sampleCount][];

            for (int i = 0; i < sampleCount; i++)
            {
                input[i]  = new double[inputCount];
                output[i] = new double[outputCount];

                // set input
                input[i][0] = data[i, 0];
                input[i][1] = data[i, 1];
                input[i][2] = data[i, 2];
                // set output
                output[i][classes[i]] = 1;
            }

            var teacher = new BackPropagationLearning(Network);

            while (true)
            {
                double error = teacher.RunEpoch(input, output);

                if (error == 0)
                {
                    break;
                }
            }

            Network.Save(fn);
        }
Example #13
0
        public void Train(IList <ClassifiedTrademark> trainingSet)
        {
            var inputs  = new double[trainingSet.Count][];
            var outputs = new double[trainingSet.Count][];

            for (int i = 0; i < trainingSet.Count; i++)
            {
                inputs[i]  = featureExtractor.ExtractFeatures(trainingSet[i].Image);
                outputs[i] = new double[classCount];
                outputs[i][trainingSet[i].TrademarkClass] = 1;
            }

            ann = new ActivationNetwork(new SigmoidFunction(), featureExtractor.Dimension, 12, classCount);            //12
            ann.Randomize();
            var teacher = new BackPropagationLearning(ann)
            {
                LearningRate = 0.1
            };

            const int iterations = 100000;
            const int reportFreq = iterations / 20;

            for (int i = 0; i < iterations; i++)
            {
                var e = teacher.RunEpoch(inputs, outputs) / trainingSet.Count;
                if (i % reportFreq == 0)
                {
                    Console.WriteLine("Training. " + GetType().Name + " error rate: " + e);
                }
                if (Math.Abs(e) < 1e-4)
                {
                    break;
                }
            }
        }
Example #14
0
        private void Learn()
        {
            errors.Clear();
            var network = new ActivationNetwork(
                new SigmoidFunction(), // sigmoid activation function
                2,
                hidden,
                2);
            BackPropagationLearning teacher = new BackPropagationLearning(network);

            double error = 1;
            int    k     = inputs.Length;

            while (k >= inputs.Length / 100)
            {
                error = teacher.RunEpoch(inputs, outputs);
                k     = 0;
                var lst = new double[inputs.Length][];
                for (int i = 0; i < inputs.Length; i++)
                {
                    var c = network.Compute(inputs[i]);
                    if (c[0] > c[1] & outputs[i][0] < outputs[i][1] || c[0] < c[1] & outputs[i][0] > outputs[i][1])
                    {
                        k++;
                    }
                    lst[i] = c;
                }
                comput = lst;
                errors.Add(k);
            }
        }
Example #15
0
 public void CreateNetwork(double learningRate, double momentum)
 {
     ActNetwork           = new ActivationNetwork((IActivationFunction) new SigmoidFunction(2), 16, MiddleNeuronsCount, 4);
     Teacher              = new BackPropagationLearning(ActNetwork);
     Teacher.LearningRate = learningRate;
     Teacher.Momentum     = momentum;
 }
        public override double Train(Data info, float lr, float mom)
        {
            //Setup trainer using backpropagation.
            BackPropagationLearning teacher = new BackPropagationLearning(AccordNetwork);

            //Train network on data set.
            double error = double.PositiveInfinity;

            double lastError;

            do
            {
                lastError = error;
                int i = 0;

                while (i < 1000)
                {
                    error = teacher.RunEpoch(info.InputData, info.OutputData);
                    i++;
                }
            } while (lastError - error > 0.0000001);


            return(error);
        }
        public void TeachNeuralteacher(List <string> list)
        {
            double[][] outputs = new double[outputsC45.Length][];
            for (int i = 0; i < outputsC45.Length; i++)
            {
                outputs[i] = new double[1] {
                    outputsC45[i] - 1
                };
            }
            var inputs = GetC45Data(list);
            IActivationFunction function = new SigmoidFunction(2);

            network = new ActivationNetwork(function, 12, 4, 4, 1);
            teacher = new BackPropagationLearning(network);
            var    input   = GetC45Data(list);
            double tempMin = 9999999999;
            double error   = 0;
            int    count   = 0;

            while (count != 3)
            {
                error = teacher.RunEpoch(input, outputs);
                if (error + 0.00001 < tempMin)
                {
                    tempMin = error;
                    count   = 0;
                }
                else
                {
                    count++;
                }
            }
        }
 public void AutoTeaching(BackPropagationLearning _teacher)
 {
     for (int i = 0; i < 100000; i++)
     {
         double   pacmanLength = R.Next(800);
         double   AlphaSine    = R.NextDouble();
         double   ghostLength  = R.Next(600);
         double   BetaSine     = R.NextDouble();
         double[] Inputs       = { pacmanLength, AlphaSine, ghostLength, BetaSine };
         Console.Write("[T] Inputs >> ");
         for (int j = 0; j < Inputs.Length; j++)
         {
             Console.Write(Inputs[j] + " ");
         }
         Console.WriteLine();
         double[] Outputs = { BetaSine };
         Console.Write("[T] Outputs >> ");
         for (int j = 0; j < Outputs.Length; j++)
         {
             Console.Write(Outputs[j] + " ");
         }
         Console.WriteLine();
         for (int j = 0; j < 2; j++)
         {
             _teacher.Teach(Inputs, Outputs);
             double[] Test = _teacher.Launch(Inputs);
             Console.Write("[T] Out >> ");
             for (int k = 0; k < Test.Length; k++)
             {
                 Console.Write(Test[k] + " ");
             }
             Console.WriteLine();
         }
     }
 }
Example #19
0
        public void TrainNetwork(NetworkGraph graph)
        {
            teacher = new BackPropagationLearning(network);

            InputData  = GetXvals();
            OutputData = GetSinWavePoints();

            double error = int.MaxValue;

            int iteration = 1;

            while (error > .001)
            {
                error = teacher.RunEpoch(InputData, OutputData);

                graph.AddTitle(string.Format("SIN(x) Iteration {0}-{1:0.00} Error", iteration, error));
                graph.ResetData();

                int i = 0;
                foreach (var x in InputData)
                {
                    graph.AddPoint(x[0], OutputData[i][0], network.Compute(x)[0]);
                    i++;
                }

                graph.Update();

                Thread.Sleep((int)Math.Max(error, 10));

                iteration++;
            }

            var asdf = 0;
        }
        public void UpdateNeuralNet(string csvString, string trainedNetName)
        {
            if (!File.Exists(outputDir + "dataset/" + trainedNetName + ".tmp"))
            {
                var lines = csvString.Split('\n');
                var csv   = from line in lines
                            select(line.Split(',')).ToArray();

                double[][] inputs   = new double[150][];
                double[][] outputs  = new double[150][];
                string[]   types    = new string[150];
                int        rowIndex = 0;
                foreach (var row in csv)
                {
                    int colIndex = 0;
                    inputs[rowIndex] = new double[4];
                    foreach (var col in row)
                    {
                        if (colIndex < row.Length - 1)
                        {
                            inputs[rowIndex][colIndex] = double.Parse(col);
                        }
                        else
                        {
                            types[rowIndex] = col;
                        }
                        colIndex++;
                    }
                    rowIndex++;
                }
                string[] distinct = types.Select(o => o.Replace("\r", "")).Distinct().ToArray();
                PutDistinctLevel(trainedNetName, distinct);
                BackPropagation bp = new BackPropagation();
                rowIndex = 0;
                foreach (var row in types)
                {
                    outputs[rowIndex] = new double[3];
                    outputs[rowIndex] = bp.getIndex(row.Replace("\r", ""), distinct);
                    rowIndex++;
                }

                // create neural network
                ActivationNetwork       network = new ActivationNetwork(new SigmoidFunction(0.43), 4, 8, 3);
                BackPropagationLearning teacher = new BackPropagationLearning(network);
                teacher.LearningRate = 0.2;
                teacher.Momentum     = 0;
                // loop
                double error = 1;
                while (error > 0.01)
                {
                    // run epoch of learning procedure
                    error = teacher.RunEpoch(inputs, outputs);
                    Console.WriteLine("error is: " + error);
                    // check error value to see if we need to stop
                    // ...
                }

                network.Save(outputDir + @"dataset/" + trainedNetName + ".tmp");
            }
        }
Example #21
0
        public void RunTraining2(Training2Parameters parameters)
        {
            LogInfoUsingBothLoggers("Started supervised training.");

            var trainingData = _configuration.InputsOutputsData;

            var teacher = new BackPropagationLearning(NeuralNetwork)
            {
                LearningRate = parameters.LearningRate,
                Momentum     = parameters.Momentum,
            };

            var guiLogIntensity = GetGuiLogIntensity(parameters.SupervisedEpochs);

            foreach (int i in Enumerable.Range(1, parameters.SupervisedEpochs))
            {
                var error   = teacher.RunEpoch(trainingData.Inputs, trainingData.Outputs) / trainingData.Inputs.Length;
                var message = $"Supervised: {i}, Error = {error}";
                LogCurrentEpochResult(message, guiLogIntensity, i, parameters.SupervisedEpochs);

                if (_skipPhaseRequest.RequestedAndUnhandled)
                {
                    LogPhaseSkippnigAndNotifyHandled(i, parameters.SupervisedEpochs);
                    break;
                }
            }
        }
Example #22
0
        static void Main(string[] args)
        {
            List <double> inputs  = new List <double>();
            List <double> outputs = new List <double>();

            // load training data

            // normalize input data

            // normalize output data

            var network = new ActivationNetwork(new SigmoidFunction(ALPHA_VALUE), 1, FIRST_LAYER_NEURON_COUNT, 1);
            var teacher = new BackPropagationLearning(network);

            network.Randomize();
            teacher.LearningRate = 0.75;


            int    iteration = 1;
            double error     = 1.0;

            while (error > 0.25)
            {
                iteration++;

                if ((iteration % 1000) == 0)
                {
                    Console.WriteLine("Error {0}\t| It: {1}", error, iteration);
                }
            }

            Console.ReadLine();
        }
        public void Train(int cycleCount)
        {
            double meanError = 0;

            if (trainingSet.Count < 20)
            {
                Initialize();
            }
            ActivationNetwork       trainingNetwork = new ActivationNetwork(new SigmoidFunction(2), 6, 6, 4, 4);
            BackPropagationLearning teacher         = new BackPropagationLearning(trainingNetwork);

            teacher.Momentum = 0.1;

            //teacher.Run(trainingSet[0].Dataset,trainingSet[0].Genre);
            for (int i = 0; i < cycleCount; i++)
            {
                foreach (SoundSnippet snippet in trainingSet)
                {
                    meanError += teacher.Run(
                        snippet.Dataset,
                        snippet.Genre);
                }
            }

            meanError = meanError / (cycleCount * trainingSet.Count);

            network = trainingNetwork;
            network.Save(networkPath);
            Console.WriteLine("Done!");
            Console.WriteLine("Error rate: " + Convert.ToString(meanError));
        }
Example #24
0
        public List <double> TeachNetwork(List <double> Input, List <double> Output)
        {
            var teacher = new BackPropagationLearning(network)
            {
                LearningRate = 0.1f,
                Momentum     = 0.9f
            };

            /*var teacher = new Accord.Neuro.Learning.DeepNeuralNetworkLearning(network)
             * {
             *  Algorithm = (ann, i) => new ParallelResilientBackpropagationLearning(ann),
             *  LayerIndex = network.Layers.Length - 1,
             * };*/

            //double[][] inputs, outputs;
            //Main.Database.Training.GetInstances(out inputs, out outputs);

            // Start running the learning procedure
            //for (int i = 0; i < Epochs && !shouldStop; i++)
            {
                teacher.Run(Input.ToArray(), Output.ToArray());
                //double error = teacher.RunEpoch(inputs, outputs);
            }

            //network.UpdateVisibleWeights();

            return(new List <double>(network.Compute(Input.ToArray())));
        }
Example #25
0
        void BackPropagationMethod()
        {
            an = new ActivationNetwork(
                new SigmoidFunction(),
                inputCount,
                hidden,
                outputCount
                );
            bpn = new BackPropagationLearning(an);
            new NguyenWidrow(an).Randomize();

            Console.WriteLine("Learning");
            for (var i = 0; i < maxEpoch; i++)
            {
                var error = bpn.RunEpoch(inputImgArray.ToArray(), outputImgArray.ToArray());
                if (error < errorGoal)
                {
                    break;
                }
                if (i % 10 == 0)
                {
                    Console.WriteLine($"Report error BPN {i} : {error}");
                }
            }
            an.Save(savedANNetwork);
        }
        /// <summary>
        /// Initializes the member network and the member teacher.
        /// </summary>
        /// <param name="network"></param>
        /// <param name="teacher"></param>
        private void SetUpNetwork(ActivationNetwork network, NeuralNetworkInfo info)
        {
            string teacher = info.Teacher;

            m_Network = network;

            if (teacher == "BackPropagation")
            {
                BackPropagationLearning learner = new BackPropagationLearning(m_Network);
                learner.LearningRate = info.LearningRate;
                learner.Momentum     = info.Momentum;
                m_Teacher            = learner;
            }
            else if (teacher == "Perceptron")
            {
                PerceptronLearning learner = new PerceptronLearning(m_Network);
                learner.LearningRate = info.LearningRate;
                m_Teacher            = learner;
            }
            else if (teacher == "DeltaRule")
            {
                DeltaRuleLearning learner = new DeltaRuleLearning(m_Network);
                learner.LearningRate = info.LearningRate;
                m_Teacher            = learner;
            }
            else
            {
                BackPropagationLearning learner = new BackPropagationLearning(m_Network);
                learner.LearningRate = info.LearningRate;
                learner.Momentum     = info.Momentum;
                m_Teacher            = learner;
            }
        }
        public ExamingNetworkMaster()
        {
            Console.WriteLine("Welcome to Examing Network Master");
            Console.WriteLine("Now you have to load existing network or create new");
            FeedForwardNetwork network = new FeedForwardNetwork();

            Console.WriteLine("Do you want to load existing network?");
            if (Console.ReadLine() == "Yes")
            {
                network = FeedForwardNetwork.Load(Console.ReadLine());
            }
            else
            {
                network = new FeedForwardNetwork(new BipolarSigmoidFunction(), Environment.TickCount, 1, 7, 1);
                Console.WriteLine("New neural network created successfully");
            }
            BackPropagationLearning teacher = new BackPropagationLearning(network);

            teacher.LearningRate = 0.03;
            Console.WriteLine("Let's teach it");
            Teaching(teacher);
            Console.WriteLine("Now it's time to exam this network(:");
            Examing(network);
            Console.WriteLine("Do you want to save this network?");
            if (Console.ReadLine() == "Yes")
            {
                Console.WriteLine("Enter filename: ");
                network.Save(Console.ReadLine());
            }
            Console.WriteLine("Press enter to exit...");
            Console.ReadKey();
        }
Example #28
0
        private void learnNetworkSupervised()
        {
            if (!Main.CanClassify)
            {
                return;
            }
            Dispatcher dispatcher = Dispatcher.CurrentDispatcher;

            new Task(() =>
            {
                var teacher = new BackPropagationLearning(Main.Network)
                {
                    LearningRate = LearningRate,
                    Momentum     = Momentum
                };

                double[][] inputs, outputs;
                Main.Database.Training.GetInstances(out inputs, out outputs);

                // Start running the learning procedure
                for (int i = 0; i < Epochs && !shouldStop; i++)
                {
                    double error = teacher.RunEpoch(inputs, outputs);

                    dispatcher.BeginInvoke((Action <int, double>)updateError,
                                           DispatcherPriority.ContextIdle, i + 1, error);
                }

                Main.Network.UpdateVisibleWeights();
                IsLearning = false;
            }).Start();
        }
Example #29
0
        public OddTest()
        {
            Console.WriteLine("Welcome to Neural Odd Test Example");
            FeedForwardNetwork      network = new FeedForwardNetwork(new SigmoidFunction(), 1, 10, 1);
            BackPropagationLearning teacher = new BackPropagationLearning(network);

            teacher.LearningRate = 0.1;
            Random R = new Random(Environment.TickCount);

            Console.WriteLine("Training...");
            for (int i = 0; i < 1000; i++)
            {
                Console.Write("[T] Input >> ");
                int Input = R.Next(1024);
                Console.WriteLine(Input);
                teacher.Teach(Binary(Input), (Input % 2 == 0) ? (new double[] { 0 }) : (new double[] { 1 }));
                Console.Write("[T] Output >> ");
                Console.WriteLine(network.Launch(Binary(Input))[0].ToString());
            }
            Console.WriteLine("Examing...");
            Console.Write("[E] Input >> ");
            string userString = Console.ReadLine();

            while (userString != "stop")
            {
                int Number = int.Parse(userString.Split(' ')[0]);
                Console.Write("[E] Output >> ");
                Print(network.Launch(Binary(Number)));
                Console.Write("[E] Input >> ");
                userString = Console.ReadLine();
            }
            Console.WriteLine();
        }
Example #30
0
        public virtual void Prepare()
        {
            PrepareData();
            PrepareCharts();

            network = new ActivationNetwork(new Tanh(0.2),
                                            Sizes[0],
                                            Sizes.Skip(1).ToArray());

            network.ForEachWeight(z => rnd.NextDouble() * 2 - 1);

            teacher = new BackPropagationLearning(network);
            teacher.LearningRate = 1;



            Form = new Form()
            {
                Text            = GetType().Name,
                Size            = new Size(800, 600),
                FormBorderStyle = FormBorderStyle.FixedDialog,
                Controls        =
                {
                    AreaChart,
                    HistoryChart
                }
            };
        }
Example #31
0
 private void Awake()
 {
     this.agent_play = false;
     //ActivationLayer activationLayer1 = new ActivationLayer(4, 2, new LinearFunction());
     //ActivationLayer activationLayer2 = new ActivationLayer(1, 4, new LinearFunction());
     this.network = new ActivationNetwork(new LinearFunction(),
                                          2,
                                          8);
     teacher = new BackPropagationLearning(network);
     /////
     this.network2 = new ActivationNetwork(new SigmoidFunction(),
                                           8,
                                           8);
     teacher2 = new BackPropagationLearning(network2);
     /////
     this.network3 = new ActivationNetwork(new LinearFunction(),
                                           8,
                                           1);
     teacher3 = new BackPropagationLearning(network3);
     /////
     this.network4 = new ActivationNetwork(new SigmoidFunction(),
                                           1,
                                           1);
     teacher4 = new BackPropagationLearning(network4);
 }
Example #32
0
		public AnnAgent(bool learn, int boardSize, byte player = 1)
		{
			learning = learn;
			playerNumber = player;
			int boardFields = boardSize * boardSize;
			if(File.Exists("ann" + boardSize + ".bin"))
				network = (ActivationNetwork)Serialization.LoadNetwork("ann" + boardSize + ".bin");
			else
				network = new ActivationNetwork(new BipolarSigmoidFunction(), boardFields, 5, boardFields * 2);
			backProp = new BackPropagationLearning(network);
			teacher = new MinimaxAgent(2, player);
		}
        public BackPropogation()
        {
            InitializeComponent();

            activation_nework = new ActivationNetwork(new BipolarSigmoidFunction(), 50, 50,  10, 1);

            watch1 = new Stopwatch();

            watch2 = new Stopwatch();

            watch3 = new Stopwatch();

            backgroundWorkerTrainer.Disposed += backgroundWorkerTrainer_Disposed;
            backgroundWorkerTrainer.DoWork += backgroundWorkerTrainer_DoWork;
            backgroundWorkerTrainer.ProgressChanged += backgroundWorkerTrainer_ProgressChanged;
            backgroundWorkerTrainer.WorkerSupportsCancellation = true;
            backgroundWorkerTrainer.WorkerReportsProgress = true;
            saveFileDialog1.Filter = "feed forward network files (*.ffn)|*.ffn";
            saveFileDialog1.Title = "Save neural networkfile";
            saveFileDialog1.InitialDirectory = null;
            saveFileDialog1.FileName = null;

            openFileDialog1.Filter = "feed forward network files (*.ffn)|*.ffn";
            openFileDialog1.Title = "Load neural network file";
            openFileDialog1.InitialDirectory = null;
            openFileDialog1.FileName = null;

            backgroundWorkerSignal.Disposed += backgroundWorkerSignal_Disposed;
            backgroundWorkerSignal.WorkerSupportsCancellation = true;
            backgroundWorkerSignal.WorkerReportsProgress = true;
            backgroundWorkerSignal.DoWork += backgroundWorkerSignal_DoWork;
            backgroundWorkerSignal.RunWorkerCompleted += backgroundWorkerSignal_RunWorkerCompleted;//80, 70, 60, 50, 40,
            network1 = activation_nework;
            network2 = activation_nework; // new ActivationNetwork(new BipolarSigmoidFunction(), 50, 50, 40, 1);
            network3 = activation_nework; // new ActivationNetwork(new BipolarSigmoidFunction(), 50, 50, 40, 1);
            network4 = activation_nework; // new ActivationNetwork(new BipolarSigmoidFunction(), 50, 50, 40, 1);
            network5 = new ActivationNetwork(new BipolarSigmoidFunction(), 50,1);
            network6 = new ActivationNetwork(new BipolarSigmoidFunction(), 50, 1);
            teacher = new BackPropagationLearning(network1);
            evteacher = new EvolutionaryLearning(network2, 100);
            reprop = new ResilientBackpropagationLearning(network3);
            lbteacher = new LevenbergMarquardtLearning(network4);
            delta = new DeltaRuleLearning(network5);
            perceptron = new PerceptronLearning(network6);
            delta.LearningRate = 1;
            perceptron.LearningRate = 0.1;
            myPane = new GraphPane();
            listPointsOne = new PointPairList();

            myPane = zedGraphControl1.GraphPane;

            // set a title
            myPane.Title.Text = "Error VS Time";

            // set X and Y axis titles
            myPane.XAxis.Title.Text = "Time in Milliseconds";
            myPane.YAxis.Title.Text = "Error";
            myCurveOne = myPane.AddCurve("Learning curve", listPointsOne, Color.Red, SymbolType.None);
               // myCurveOne = myPane.AddCurve("Resilient Back Propagation", listPointstwo, Color.Green, SymbolType.None);
               // myCurveOne = myPane.AddCurve("Genetic Learning", listPointsthree, Color.Blue, SymbolType.None);
        }
        public BinarySplitForm()
        {
            InitializeComponent();

            watch = new Stopwatch();

            backgroundWorkerTrainer.Disposed += backgroundWorkerTrainer_Disposed;
            backgroundWorkerTrainer.DoWork += backgroundWorkerTrainer_DoWork;
            backgroundWorkerTrainer.ProgressChanged += backgroundWorkerTrainer_ProgressChanged;
            backgroundWorkerTrainer.WorkerSupportsCancellation = true;
            backgroundWorkerTrainer.WorkerReportsProgress = true;
            saveFileDialog1.Filter = "feed forward network files (*.ffn)|*.ffn";
            saveFileDialog1.Title = "Save neural networkfile";
            saveFileDialog1.InitialDirectory = null;
            saveFileDialog1.FileName = null;

            openFileDialog1.Filter = "feed forward network files (*.ffn)|*.ffn";
            openFileDialog1.Title = "Load neural network file";
            openFileDialog1.InitialDirectory = null;
            openFileDialog1.FileName = null;

            backgroundWorkerSignal.Disposed += backgroundWorkerSignal_Disposed;
            backgroundWorkerSignal.WorkerSupportsCancellation = true;
            backgroundWorkerSignal.WorkerReportsProgress = true;
            backgroundWorkerSignal.DoWork += backgroundWorkerSignal_DoWork;
            backgroundWorkerSignal.RunWorkerCompleted += backgroundWorkerSignal_RunWorkerCompleted;

            // initialize input and output values
            input = new double[4][] {
                new double[] {0, 0}, new double[] {0, 1},
                new double[] {1, 0}, new double[] {1, 1}
            };
            output = new double[4][] {
                new double[] {0}, new double[] {1},
                new double[] {1}, new double[] {0}
            };

            network = new ActivationNetwork(new SigmoidFunction(2), 2, 2, 1);

            teacher = new BackPropagationLearning(network);

            //logg.Show();

            // pane used to draw your chart
            myPane = new GraphPane();

            // poing pair lists
            listPointsOne = new PointPairList();
        }
Example #35
0
        private void learnNetworkSupervised()
        {
            if (!Main.CanClassify) return;
            Dispatcher dispatcher = Dispatcher.CurrentDispatcher;

            new Task(() =>
            {
                var teacher = new BackPropagationLearning(Main.Network)
                {
                    LearningRate = LearningRate,
                    Momentum = Momentum
                };

                double[][] inputs, outputs;
                Main.Database.Training.GetInstances(out inputs, out outputs);

                // Start running the learning procedure
                for (int i = 0; i < Epochs && !shouldStop; i++)
                {
                    double error = teacher.RunEpoch(inputs, outputs);

                    dispatcher.BeginInvoke((Action<int, double>)updateError,
                        DispatcherPriority.ContextIdle, i + 1, error);
                }

                Main.Network.UpdateVisibleWeights();
                IsLearning = false;

            }).Start();
        }
        public double[] Run(int[] numOfHiddenNeurals)
        {
            // validation and testing error
            double[] errors = new double[2];

            // number of learning samples
            int samples = _data.Length - _windowSize;
            int trainingSamples = samples - _predictionSize;

            // prepare learning data
            double[][] input = new double[samples][];
            double[][] output = new double[samples][];
            // sample indices
            int[] indices = new int[samples];
            int[] trainingIndices = new int[trainingSamples];

            // normalization function
            var normalizeFunc = new MinMaxNormalization(_xMax, _xMin, _data.Max(), _data.Min());

            for (int i = 0; i < samples; i++)
            {
                input[i] = new double[_windowSize];
                output[i] = new double[_outputNum];

                // set input
                for (int j = 0; j < _windowSize; j++)
                {
                    input[i][j] = normalizeFunc.Compute(_data[i + j]);
                }
                // set output
                for (int j = 0; j < _outputNum; j++)
                {
                    output[i][j] = normalizeFunc.Compute(_data[i + _windowSize + j]);
                }

                indices[i] = i;
            }
            // randomize the sample indices
            Utils.Shuffle<int>(indices);
            output.Swap(indices);
            input.Swap(indices);

            // get training samples
            double[][] trainingInput = new double[trainingSamples][];
            double[][] trainingOutput = new double[trainingSamples][];

            for (int i = 0; i < trainingSamples; i++)
            {
                trainingInput[i] = new double[_windowSize];
                trainingOutput[i] = new double[_outputNum];

                // set input
                for (int j = 0; j < _windowSize; j++)
                {
                    trainingInput[i][j] = input[i][j];
                }
                // set output
                for (int j = 0; j < _outputNum; j++)
                {
                    trainingOutput[i][j] = output[i][j];
                }

                trainingIndices[i] = i;
            }
            //// randomize the sample indices
            //Utils.Shuffle<int>(trainingIndices);
            //trainingOutput.Swap(trainingIndices);
            //trainingInput.Swap(trainingIndices);

            // create multi-layer neural network
            int[] neuronsCount = numOfHiddenNeurals.Concat(new int[] { _outputNum }).ToArray();
            ActivationNetwork network = new ActivationNetwork(
                _function,
                _windowSize, neuronsCount);

            // create teacher
            BackPropagationLearning teacher = new BackPropagationLearning(network);
            // set learning rate and momentum
            teacher.LearningRate = _learningRate;
            teacher.Momentum = 0.0;
            //var teacher = new ParallelResilientBackpropagationLearning(network);
            //teacher.Reset(_learningRate);

            // iterations
            int iteration = 1;

            // solution array
            int solutionSize = _data.Length - _windowSize;
            double[,] solution = new double[solutionSize, 1 + _outputNum];

            // calculate X values to be used with solution function
            for (int j = 0; j < solutionSize; j++)
            {
                solution[j, 0] = j + _windowSize;
            }

            // loop
            var needToStop = false;
            while (!needToStop)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(trainingInput, trainingOutput) / trainingSamples;

                // calculate solution and learning and prediction errors every 5
                double learningError = 0.0;
                double predictionError = 0.0;

                if (iteration % 5 == 0)
                {
                    // go through all the data
                    for (int i = 0; i < samples; i++)
                    {
                        double y = 0.0;
                        double o = 0.0;
                        double err = 0.0;

                        for (int j = 0; j < _outputNum; j++)
                        {
                            y = output[i][j];
                            o = network.Compute(input[i])[j];
                            err += (o - y) * (o - y) / _outputNum;

                            // evalue the function
                            solution[i, j + 1] = normalizeFunc.Inverse(o);
                        }

                        // calculate prediction error (MSE)
                        if (i >= trainingSamples)
                        {
                            predictionError += err;// Math.Pow((solution[i, 1] - normalizeFunc.Inverse(output[i][0])), 2.0);
                        }
                        else
                        {
                            learningError += err;
                        }
                    }
                }

                // Adaptive Learning - decrease the learning rate
                // n(t) = n0 * a^(t/T)
                // a = 1/10^x, x >= 1
                teacher.LearningRate = _learningRate * Math.Pow(0.1, iteration / _iterations);

                // increase iteration
                iteration++;

                // check if we need to stop
                if ((_iterations != 0) && (iteration > _iterations))
                {
                    errors[0] = learningError / trainingSamples;
                    errors[1] = predictionError / _predictionSize;

                    Console.WriteLine("Final Learning MSE Error: " + errors[0]);
                    Console.WriteLine("Final Prediction MSE Error: " + errors[1]);
                    Console.WriteLine("Final Learning Rate: " + teacher.LearningRate);
                    Console.WriteLine("Window Size:              " + _windowSize + "\n"
                                    + "Number of Hidden Neurons: " + neuronsCount[0] + "\n"
                                    + "Output Size:              " + _outputNum);

                    break;
                }
            }

            ////print result to file
            //Console.WriteLine("Real Values\t\tRegression Values");
            //for (int i = samples - 1; i >= trainingSamples; --i)
            //{
            //    Console.WriteLine(normalizeFunc.Inverse(output[i][0]) + "\t\t" + solution[i, 1]);
            //}

            return errors;
        }
Example #37
0
        static void Main(string[] args)
        {
            double[][] inputs;
            double[][] outputs;
            double[][] testInputs;
            double[][] testOutputs;

            // Load ascii digits dataset.
            inputs = DataManager.Load(@"../../../data/data.txt", out outputs);

            // The first 500 data rows will be for training. The rest will be for testing.
            testInputs = inputs.Skip(500).ToArray();
            testOutputs = outputs.Skip(500).ToArray();
            inputs = inputs.Take(500).ToArray();
            outputs = outputs.Take(500).ToArray();

            // Setup the deep belief network and initialize with random weights.
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 10, 10);
            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();
            
            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);
            // Create mini-batches to speed learning.
            int[] groups = Accord.Statistics.Tools.RandomGroups(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 500; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }

            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(testInputs[i]);
                if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
                {
                    correct++;
                }
            }

            Console.WriteLine("Correct " + correct + "/" + inputs.Length + ", " + Math.Round(((double)correct / (double)inputs.Length * 100), 2) + "%");
            Console.Write("Press any key to quit ..");
            Console.ReadKey();
        }
 private void button3_Click_1(object sender, EventArgs e)
 {
     button3.Enabled = false;
     network1 = null;
     teacher = null;
     network1 = new ActivationNetwork(new BipolarSigmoidFunction(param2), 100, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 1);
     teacher = new BackPropagationLearning(network1);
     network1.Randomize();
 }