IsPointerType() public method

public IsPointerType ( ) : bool
return bool
Ejemplo n.º 1
0
            private bool bindExplicitConversionToPointer()
            {
                // 27.4 Pointer conversions
                //
                // in an unsafe context, the set of available explicit conversions (13.2) is extended to
                // include the following explicit pointer conversions:
                //
                // * From any pointer-type to any other pointer-type.
                // * From sbyte, byte, short, ushort, int, uint, long, or ulong to any pointer-type.

                if (_typeSrc.IsPointerType() || _typeSrc.fundType() <= FUNDTYPE.FT_LASTINTEGRAL && _typeSrc.isNumericType())
                {
                    if (_needsExprDest)
                    {
                        _binder.bindSimpleCast(_exprSrc, _exprTypeDest, out _exprDest);
                    }
                    return(true);
                }
                return(false);
            }
Ejemplo n.º 2
0
            private bool bindImplicitConversionFromPointer()
            {
                // 27.4 Pointer conversions
                //
                // In an unsafe context, the set of available implicit conversions (13.1) is extended to include
                // the following implicit pointer conversions:
                //
                // * From any pointer-type to the type void*.

                if (_typeDest.IsPointerType() && _typeDest.AsPointerType().GetReferentType() == _binder.getVoidType())
                {
                    if (_needsExprDest)
                        _binder.bindSimpleCast(_exprSrc, _exprTypeDest, out _exprDest);
                    return true;
                }
                return false;
            }
Ejemplo n.º 3
0
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        // RUNTIME BINDER ONLY CHANGE
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

        internal bool GetBestAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, CType typeSrc, out CType typeDst)
        {
            // This method implements the "best accessible type" algorithm for determining the type
            // of untyped arguments in the runtime binder. It is also used in method type inference
            // to fix type arguments to types that are accessible.

            // The new type is returned in an out parameter. The result will be true (and the out param
            // non-null) only when the algorithm could find a suitable accessible type.

            Debug.Assert(semanticChecker != null);
            Debug.Assert(bindingContext != null);
            Debug.Assert(typeSrc != null);

            typeDst = null;

            if (semanticChecker.CheckTypeAccess(typeSrc, bindingContext.ContextForMemberLookup()))
            {
                // If we already have an accessible type, then use it. This is the terminal point of the recursion.
                typeDst = typeSrc;
                return true;
            }

            // These guys have no accessibility concerns.
            Debug.Assert(!typeSrc.IsVoidType() && !typeSrc.IsErrorType() && !typeSrc.IsTypeParameterType());

            if (typeSrc.IsParameterModifierType() || typeSrc.IsPointerType())
            {
                // We cannot vary these.
                return false;
            }

            CType intermediateType;
            if ((typeSrc.isInterfaceType() || typeSrc.isDelegateType()) && TryVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsAggregateType(), out intermediateType))
            {
                // If we have an interface or delegate type, then it can potentially be varied by its type arguments
                // to produce an accessible type, and if that's the case, then return that.
                // Example: IEnumerable<PrivateConcreteFoo> --> IEnumerable<PublicAbstractFoo>
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType() && TryArrayVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsArrayType(), out intermediateType))
            {
                // Similarly to the interface and delegate case, arrays are covariant in their element type and
                // so we can potentially produce an array type that is accessible.
                // Example: PrivateConcreteFoo[] --> PublicAbstractFoo[]
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsNullableType())
            {
                // We have an inaccessible nullable type, which means that the best we can do is System.ValueType.
                typeDst = this.GetOptPredefAgg(PredefinedType.PT_VALUE).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType())
            {
                // We have an inaccessible array type for which we could not earlier find a better array type
                // with a covariant conversion, so the best we can do is System.Array.
                typeDst = this.GetReqPredefAgg(PredefinedType.PT_ARRAY).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            Debug.Assert(typeSrc.IsAggregateType());

            if (typeSrc.IsAggregateType())
            {
                // We have an AggregateType, so recurse on its base class.
                AggregateType aggType = typeSrc.AsAggregateType();
                AggregateType baseType = aggType.GetBaseClass();

                if (baseType == null)
                {
                    // This happens with interfaces, for instance. But in that case, the
                    // conversion to object does exist, is an implicit reference conversion,
                    // and so we will use it.
                    baseType = this.GetReqPredefAgg(PredefinedType.PT_OBJECT).getThisType();
                }

                return GetBestAccessibleType(semanticChecker, bindingContext, baseType, out typeDst);
            }

            return false;
        }
Ejemplo n.º 4
0
        private static bool CheckSingleConstraint(CSemanticChecker checker, ErrorHandling errHandling, Symbol symErr, TypeParameterType var, CType arg, TypeArray typeArgsCls, TypeArray typeArgsMeth, CheckConstraintsFlags flags)
        {
            bool fReportErrors = 0 == (flags & CheckConstraintsFlags.NoErrors);

            if (arg.IsOpenTypePlaceholderType())
            {
                return true;
            }

            if (arg.IsErrorType())
            {
                // Error should have been reported previously.
                return false;
            }

            if (checker.CheckBogus(arg))
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_BogusType, arg);
                }

                return false;
            }

            if (arg.IsPointerType() || arg.isSpecialByRefType())
            {
                if (fReportErrors)
                {
                    errHandling.Error(ErrorCode.ERR_BadTypeArgument, arg);
                }

                return false;
            }

            if (arg.isStaticClass())
            {
                if (fReportErrors)
                {
                    checker.ReportStaticClassError(null, arg, ErrorCode.ERR_GenericArgIsStaticClass);
                }

                return false;
            }

            bool fError = false;
            if (var.HasRefConstraint() && !arg.IsRefType())
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_RefConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                }

                fError = true;
            }

            TypeArray bnds = checker.GetSymbolLoader().GetTypeManager().SubstTypeArray(var.GetBounds(), typeArgsCls, typeArgsMeth);
            int itypeMin = 0;

            if (var.HasValConstraint())
            {
                // If we have a type variable that is constrained to a value type, then we
                // want to check if its a nullable type, so that we can report the 
                // constraint error below. In order to do this however, we need to check 
                // that either the type arg is not a value type, or it is a nullable type.
                //
                // To check whether or not its a nullable type, we need to get the resolved
                // bound from the type argument and check against that.

                bool bIsValueType = arg.IsValType();
                bool bIsNullable = arg.IsNullableType();
                if (bIsValueType && arg.IsTypeParameterType())
                {
                    TypeArray pArgBnds = arg.AsTypeParameterType().GetBounds();
                    if (pArgBnds.size > 0)
                    {
                        bIsNullable = pArgBnds.Item(0).IsNullableType();
                    }
                }

                if (!bIsValueType || bIsNullable)
                {
                    if (fReportErrors)
                    {
                        errHandling.ErrorRef(ErrorCode.ERR_ValConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                    }

                    fError = true;
                }

                // Since FValCon() is set it is redundant to check System.ValueType as well.
                if (bnds.size != 0 && bnds.Item(0).isPredefType(PredefinedType.PT_VALUE))
                {
                    itypeMin = 1;
                }
            }

            for (int j = itypeMin; j < bnds.size; j++)
            {
                CType typeBnd = bnds.Item(j);
                if (!SatisfiesBound(checker, arg, typeBnd))
                {
                    if (fReportErrors)
                    {
                        // The bound isn't satisfied because of a constaint type. Explain to the user why not.
                        // There are 4 main cases, based on the type of the supplied type argument:
                        //  - reference type, or type parameter known to be a reference type
                        //  - nullable type, from which there is a boxing conversion to the constraint type(see below for details)
                        //  - type varaiable
                        //  - value type
                        // These cases are broken out because: a) The sets of conversions which can be used 
                        // for constraint satisfaction is different based on the type argument supplied, 
                        // and b) Nullable is one funky type, and user's can use all the help they can get
                        // when using it.
                        ErrorCode error;
                        if (arg.IsRefType())
                        {
                            // A reference type can only satisfy bounds to types 
                            // to which they have an implicit reference conversion
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedRefType;
                        }
                        else if (arg.IsNullableType() && checker.GetSymbolLoader().HasBaseConversion(arg.AsNullableType().GetUnderlyingType(), typeBnd))    // This is inlining FBoxingConv
                        {
                            // nullable types do not satisfy bounds to every type that they are boxable to
                            // They only satisfy bounds of object and ValueType
                            if (typeBnd.isPredefType(PredefinedType.PT_ENUM) || arg.AsNullableType().GetUnderlyingType() == typeBnd)
                            {
                                // Nullable types don't satisfy bounds of EnumType, or the underlying type of the enum
                                // even though the conversion from Nullable to these types is a boxing conversion
                                // This is a rare case, because these bounds can never be directly stated ...
                                // These bounds can only occur when one type paramter is constrained to a second type parameter
                                // and the second type parameter is instantiated with Enum or the underlying type of the first type
                                // parameter
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableEnum;
                            }
                            else
                            {
                                // Nullable types don't satisfy the bounds of any interface type
                                // even when there is a boxing conversion from the Nullable type to 
                                // the interface type. This will be a relatively common scenario
                                // so we cal it out separately from the previous case.
                                Debug.Assert(typeBnd.isInterfaceType());
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableInterface;
                            }
                        }
                        else if (arg.IsTypeParameterType())
                        {
                            // Type variables can satisfy bounds through boxing and type variable conversions
                            Debug.Assert(!arg.IsRefType());
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedTyVar;
                        }
                        else
                        {
                            // Value types can only satisfy bounds through boxing conversions.
                            // Note that the exceptional case of Nullable types and boxing is handled above.
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedValType;
                        }
                        errHandling.Error(error, new ErrArgRef(symErr), new ErrArg(typeBnd, ErrArgFlags.Unique), var, new ErrArgRef(arg, ErrArgFlags.Unique));
                    }
                    fError = true;
                }
            }

            // Check the newable constraint.
            if (!var.HasNewConstraint() || arg.IsValType())
            {
                return !fError;
            }

            if (arg.isClassType())
            {
                AggregateSymbol agg = arg.AsAggregateType().getAggregate();

                // Due to late binding nature of IDE created symbols, the AggregateSymbol might not
                // have all the information necessary yet, if it is not fully bound.
                // by calling LookupAggMember, it will ensure that we will update all the
                // information necessary at least for the given method.
                checker.GetSymbolLoader().LookupAggMember(checker.GetNameManager().GetPredefName(PredefinedName.PN_CTOR), agg, symbmask_t.MASK_ALL);

                if (agg.HasPubNoArgCtor() && !agg.IsAbstract())
                {
                    return !fError;
                }
            }
            else if (arg.IsTypeParameterType() && arg.AsTypeParameterType().HasNewConstraint())
            {
                return !fError;
            }

            if (fReportErrors)
            {
                errHandling.ErrorRef(ErrorCode.ERR_NewConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
            }

            return false;
        }
Ejemplo n.º 5
0
        private static bool CheckSingleConstraint(CSemanticChecker checker, ErrorHandling errHandling, Symbol symErr, TypeParameterType var, CType arg, TypeArray typeArgsCls, TypeArray typeArgsMeth, CheckConstraintsFlags flags)
        {
            bool fReportErrors = 0 == (flags & CheckConstraintsFlags.NoErrors);

            if (arg.IsOpenTypePlaceholderType())
            {
                return(true);
            }

            if (arg.IsErrorType())
            {
                // Error should have been reported previously.
                return(false);
            }

            if (checker.CheckBogus(arg))
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_BogusType, arg);
                }

                return(false);
            }

            if (arg.IsPointerType() || arg.isSpecialByRefType())
            {
                if (fReportErrors)
                {
                    errHandling.Error(ErrorCode.ERR_BadTypeArgument, arg);
                }

                return(false);
            }

            if (arg.isStaticClass())
            {
                if (fReportErrors)
                {
                    checker.ReportStaticClassError(null, arg, ErrorCode.ERR_GenericArgIsStaticClass);
                }

                return(false);
            }

            bool fError = false;

            if (var.HasRefConstraint() && !arg.IsRefType())
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_RefConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                }

                fError = true;
            }

            TypeArray bnds     = checker.GetSymbolLoader().GetTypeManager().SubstTypeArray(var.GetBounds(), typeArgsCls, typeArgsMeth);
            int       itypeMin = 0;

            if (var.HasValConstraint())
            {
                // If we have a type variable that is constrained to a value type, then we
                // want to check if its a nullable type, so that we can report the
                // constraint error below. In order to do this however, we need to check
                // that either the type arg is not a value type, or it is a nullable type.
                //
                // To check whether or not its a nullable type, we need to get the resolved
                // bound from the type argument and check against that.

                bool bIsValueType = arg.IsValType();
                bool bIsNullable  = arg.IsNullableType();
                if (bIsValueType && arg.IsTypeParameterType())
                {
                    TypeArray pArgBnds = arg.AsTypeParameterType().GetBounds();
                    if (pArgBnds.Count > 0)
                    {
                        bIsNullable = pArgBnds[0].IsNullableType();
                    }
                }

                if (!bIsValueType || bIsNullable)
                {
                    if (fReportErrors)
                    {
                        errHandling.ErrorRef(ErrorCode.ERR_ValConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                    }

                    fError = true;
                }

                // Since FValCon() is set it is redundant to check System.ValueType as well.
                if (bnds.Count != 0 && bnds[0].isPredefType(PredefinedType.PT_VALUE))
                {
                    itypeMin = 1;
                }
            }

            for (int j = itypeMin; j < bnds.Count; j++)
            {
                CType typeBnd = bnds[j];
                if (!SatisfiesBound(checker, arg, typeBnd))
                {
                    if (fReportErrors)
                    {
                        // The bound isn't satisfied because of a constraint type. Explain to the user why not.
                        // There are 4 main cases, based on the type of the supplied type argument:
                        //  - reference type, or type parameter known to be a reference type
                        //  - nullable type, from which there is a boxing conversion to the constraint type(see below for details)
                        //  - type variable
                        //  - value type
                        // These cases are broken out because: a) The sets of conversions which can be used
                        // for constraint satisfaction is different based on the type argument supplied,
                        // and b) Nullable is one funky type, and user's can use all the help they can get
                        // when using it.
                        ErrorCode error;
                        if (arg.IsRefType())
                        {
                            // A reference type can only satisfy bounds to types
                            // to which they have an implicit reference conversion
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedRefType;
                        }
                        else if (arg.IsNullableType() && checker.GetSymbolLoader().HasBaseConversion(arg.AsNullableType().GetUnderlyingType(), typeBnd))    // This is inlining FBoxingConv
                        {
                            // nullable types do not satisfy bounds to every type that they are boxable to
                            // They only satisfy bounds of object and ValueType
                            if (typeBnd.isPredefType(PredefinedType.PT_ENUM) || arg.AsNullableType().GetUnderlyingType() == typeBnd)
                            {
                                // Nullable types don't satisfy bounds of EnumType, or the underlying type of the enum
                                // even though the conversion from Nullable to these types is a boxing conversion
                                // This is a rare case, because these bounds can never be directly stated ...
                                // These bounds can only occur when one type paramter is constrained to a second type parameter
                                // and the second type parameter is instantiated with Enum or the underlying type of the first type
                                // parameter
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableEnum;
                            }
                            else
                            {
                                // Nullable types don't satisfy the bounds of any interface type
                                // even when there is a boxing conversion from the Nullable type to
                                // the interface type. This will be a relatively common scenario
                                // so we cal it out separately from the previous case.
                                Debug.Assert(typeBnd.isInterfaceType());
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableInterface;
                            }
                        }
                        else if (arg.IsTypeParameterType())
                        {
                            // Type variables can satisfy bounds through boxing and type variable conversions
                            Debug.Assert(!arg.IsRefType());
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedTyVar;
                        }
                        else
                        {
                            // Value types can only satisfy bounds through boxing conversions.
                            // Note that the exceptional case of Nullable types and boxing is handled above.
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedValType;
                        }
                        errHandling.Error(error, new ErrArgRef(symErr), new ErrArg(typeBnd, ErrArgFlags.Unique), var, new ErrArgRef(arg, ErrArgFlags.Unique));
                    }
                    fError = true;
                }
            }

            // Check the newable constraint.
            if (!var.HasNewConstraint() || arg.IsValType())
            {
                return(!fError);
            }

            if (arg.isClassType())
            {
                AggregateSymbol agg = arg.AsAggregateType().getAggregate();

                // Due to late binding nature of IDE created symbols, the AggregateSymbol might not
                // have all the information necessary yet, if it is not fully bound.
                // by calling LookupAggMember, it will ensure that we will update all the
                // information necessary at least for the given method.
                checker.GetSymbolLoader().LookupAggMember(checker.GetNameManager().GetPredefName(PredefinedName.PN_CTOR), agg, symbmask_t.MASK_ALL);

                if (agg.HasPubNoArgCtor() && !agg.IsAbstract())
                {
                    return(!fError);
                }
            }
            else if (arg.IsTypeParameterType() && arg.AsTypeParameterType().HasNewConstraint())
            {
                return(!fError);
            }

            if (fReportErrors)
            {
                errHandling.ErrorRef(ErrorCode.ERR_NewConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
            }

            return(false);
        }