AsAggregateType() public method

public AsAggregateType ( ) : AggregateType
return AggregateType
Ejemplo n.º 1
0
        public virtual bool CheckTypeAccess(CType type, Symbol symWhere)
        {
            Debug.Assert(type != null);

            // Array, Ptr, Nub, etc don't matter.
            type = type.GetNakedType(true);

            if (!type.IsAggregateType())
            {
                Debug.Assert(type.IsVoidType() || type.IsErrorType() || type.IsTypeParameterType());
                return(true);
            }

            for (AggregateType ats = type.AsAggregateType(); ats != null; ats = ats.outerType)
            {
                if (ACCESSERROR.ACCESSERROR_NOERROR != CheckAccessCore(ats.GetOwningAggregate(), ats.outerType, symWhere, null))
                {
                    return(false);
                }
            }

            TypeArray typeArgs = type.AsAggregateType().GetTypeArgsAll();

            for (int i = 0; i < typeArgs.size; i++)
            {
                if (!CheckTypeAccess(typeArgs.Item(i), symWhere))
                {
                    return(false);
                }
            }

            return(true);
        }
Ejemplo n.º 2
0
        private bool IsBaseInterface(CType pDerived, CType pBase)
        {
            Debug.Assert(pDerived != null);
            Debug.Assert(pBase != null);
            if (!pBase.isInterfaceType())
            {
                return(false);
            }
            if (!pDerived.IsAggregateType())
            {
                return(false);
            }
            AggregateType atsDer = pDerived.AsAggregateType();

            while (atsDer != null)
            {
                TypeArray ifacesAll = atsDer.GetIfacesAll();
                for (int i = 0; i < ifacesAll.Count; i++)
                {
                    if (AreTypesEqualForConversion(ifacesAll[i], pBase))
                    {
                        return(true);
                    }
                }
                atsDer = atsDer.GetBaseClass();
            }
            return(false);
        }
Ejemplo n.º 3
0
        // It would be nice to make this a virtual method on typeSym.
        public AggregateType GetAggTypeSym(CType typeSym)
        {
            Debug.Assert(typeSym != null);
            Debug.Assert(typeSym.IsAggregateType() ||
                         typeSym.IsTypeParameterType() ||
                         typeSym.IsArrayType() ||
                         typeSym.IsNullableType());

            switch (typeSym.GetTypeKind())
            {
            case TypeKind.TK_AggregateType:
                return(typeSym.AsAggregateType());

            case TypeKind.TK_ArrayType:
                return(GetReqPredefType(PredefinedType.PT_ARRAY));

            case TypeKind.TK_TypeParameterType:
                return(typeSym.AsTypeParameterType().GetEffectiveBaseClass());

            case TypeKind.TK_NullableType:
                return(typeSym.AsNullableType().GetAts(ErrorContext));
            }
            Debug.Assert(false, "Bad typeSym!");
            return(null);
        }
Ejemplo n.º 4
0
        private bool HasAnyBaseInterfaceConversion(CType pDerived, CType pBase)
        {
            if (!pBase.isInterfaceType())
            {
                return(false);
            }
            if (!pDerived.IsAggregateType())
            {
                return(false);
            }
            AggregateType atsDer = pDerived.AsAggregateType();

            while (atsDer != null)
            {
                TypeArray ifacesAll = atsDer.GetIfacesAll();
                for (int i = 0; i < ifacesAll.Count; i++)
                {
                    if (HasInterfaceConversion(ifacesAll[i].AsAggregateType(), pBase.AsAggregateType()))
                    {
                        return(true);
                    }
                }
                atsDer = atsDer.GetBaseClass();
            }
            return(false);
        }
Ejemplo n.º 5
0
            private bool bindImplicitConversionFromArray()
            {
                // 13.1.4
                //
                // The implicit reference conversions are:
                //
                // *   From an array-type S with an element type SE to an array-type T with an element
                //     type TE, provided all of the following are true:
                //     *   S and T differ only in element type. In other words, S and T have the same number of dimensions.
                //     *   An implicit reference conversion exists from SE to TE.
                // *   From a one-dimensional array-type S[] to System.Collections.Generic.IList<S>,
                //     System.Collections.Generic.IReadOnlyList<S> and their base interfaces
                // *   From a one-dimensional array-type S[] to System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T>
                //     and their base interfaces, provided there is an implicit reference conversion from S to T.
                // *   From any array-type to System.Array.
                // *   From any array-type to any interface implemented by System.Array.

                if (!GetSymbolLoader().HasBaseConversion(typeSrc, typeDest))
                {
                    return(false);
                }

                EXPRFLAG grfex = 0;

                // The above if checks for dest==Array, object or an interface the array implements,
                // including IList<T>, ICollection<T>, IEnumerable<T>, IReadOnlyList<T>, IReadOnlyCollection<T>
                // and the non-generic versions.
                // REVIEW : Determine when we need EXF_REFCHECK!

                if ((typeDest.IsArrayType() ||
                     (typeDest.isInterfaceType() &&
                      typeDest.AsAggregateType().GetTypeArgsAll().Size == 1 &&
                      ((typeDest.AsAggregateType().GetTypeArgsAll().Item(0) != typeSrc.AsArrayType().GetElementType()) ||
                       0 != (flags & CONVERTTYPE.FORCECAST))))
                    &&
                    (0 != (flags & CONVERTTYPE.FORCECAST) ||
                     TypeManager.TypeContainsTyVars(typeSrc, null) ||
                     TypeManager.TypeContainsTyVars(typeDest, null)))
                {
                    grfex = EXPRFLAG.EXF_REFCHECK;
                }
                if (needsExprDest)
                {
                    binder.bindSimpleCast(exprSrc, exprTypeDest, out exprDest, grfex);
                }
                return(true);
            }
Ejemplo n.º 6
0
        public AggregateSymbol GetNakedAgg(bool fStripNub)
        {
            CType type = GetNakedType(fStripNub);

            if (type != null && type.IsAggregateType())
            {
                return(type.AsAggregateType().getAggregate());
            }
            return(null);
        }
Ejemplo n.º 7
0
        /***************************************************************************************************
        *
        *  There exists an explicit conversion ...
        * From a generic delegate type S to generic delegate type T, provided all of the follow are true:
        *   o Both types are constructed generic types of the same generic delegate type, D<X1,... Xk>.That is,
        *     S is D<S1,... Sk> and T is D<T1,... Tk>.
        *   o S is not compatible with or identical to T.
        *   o If type parameter Xi is declared to be invariant then Si must be identical to Ti.
        *   o If type parameter Xi is declared to be covariant ("out") then Si must be convertible
        *     to Ti via an identify conversion,  implicit reference conversion, or explicit reference conversion.
        *   o If type parameter Xi is declared to be contravariant ("in") then either Si must be identical to Ti,
        *     or Si and Ti must both be reference types.
        ***************************************************************************************************/
        public static bool HasGenericDelegateExplicitReferenceConversion(SymbolLoader loader, CType pSource, CType pTarget)
        {
            if (!pSource.isDelegateType() ||
                !pTarget.isDelegateType() ||
                pSource.getAggregate() != pTarget.getAggregate() ||
                loader.HasIdentityOrImplicitReferenceConversion(pSource, pTarget))
            {
                return(false);
            }

            TypeArray pTypeParams = pSource.getAggregate().GetTypeVarsAll();
            TypeArray pSourceArgs = pSource.AsAggregateType().GetTypeArgsAll();
            TypeArray pTargetArgs = pTarget.AsAggregateType().GetTypeArgsAll();

            Debug.Assert(pTypeParams.size == pSourceArgs.size);
            Debug.Assert(pTypeParams.size == pTargetArgs.size);

            for (int iParam = 0; iParam < pTypeParams.size; ++iParam)
            {
                CType pSourceArg = pSourceArgs.Item(iParam);
                CType pTargetArg = pTargetArgs.Item(iParam);

                // If they're identical then this one is automatically good, so skip it.
                // If we have an error type, then we're in some fault tolerance. Let it through.
                if (pSourceArg == pTargetArg || pTargetArg.IsErrorType() || pSourceArg.IsErrorType())
                {
                    continue;
                }
                TypeParameterType pParam = pTypeParams.Item(iParam).AsTypeParameterType();
                if (pParam.Invariant)
                {
                    return(false);
                }

                if (pParam.Covariant)
                {
                    if (!FExpRefConv(loader, pSourceArg, pTargetArg))
                    {
                        return(false);
                    }
                }
                else if (pParam.Contravariant)
                {
                    if (!pSourceArg.IsRefType() || !pTargetArg.IsRefType())
                    {
                        return(false);
                    }
                }
            }
            return(true);
        }
Ejemplo n.º 8
0
        private bool HasArrayConversionToInterface(ArrayType pSource, CType pDest)
        {
            Debug.Assert(pSource != null);
            Debug.Assert(pDest != null);
            if (!pSource.IsSZArray)
            {
                return(false);
            }
            if (!pDest.isInterfaceType())
            {
                return(false);
            }

            // * From a single-dimensional array type S[] to IList<T> or IReadOnlyList<T> and their base
            //   interfaces, provided that there is an implicit identity or reference
            //   conversion from S to T.

            // We only have six interfaces to check. IList<T>, IReadOnlyList<T> and their bases:
            // * The base interface of IList<T> is ICollection<T>.
            // * The base interface of ICollection<T> is IEnumerable<T>.
            // * The base interface of IEnumerable<T> is IEnumerable.
            // * The base interface of IReadOnlyList<T> is IReadOnlyCollection<T>.
            // * The base interface of IReadOnlyCollection<T> is IEnumerable<T>.

            if (pDest.isPredefType(PredefinedType.PT_IENUMERABLE))
            {
                return(true);
            }

            AggregateType   atsDest = pDest.AsAggregateType();
            AggregateSymbol aggDest = pDest.getAggregate();

            if (!aggDest.isPredefAgg(PredefinedType.PT_G_ILIST) &&
                !aggDest.isPredefAgg(PredefinedType.PT_G_ICOLLECTION) &&
                !aggDest.isPredefAgg(PredefinedType.PT_G_IENUMERABLE) &&
                !aggDest.isPredefAgg(PredefinedType.PT_G_IREADONLYCOLLECTION) &&
                !aggDest.isPredefAgg(PredefinedType.PT_G_IREADONLYLIST))
            {
                return(false);
            }

            Debug.Assert(atsDest.GetTypeArgsAll().Count == 1);

            CType pSourceElement    = pSource.GetElementType();
            CType pDestTypeArgument = atsDest.GetTypeArgsAll()[0];

            return(HasIdentityOrImplicitReferenceConversion(pSourceElement, pDestTypeArgument));
        }
Ejemplo n.º 9
0
 public static IEnumerable <CType> AllPossibleInterfaces(this CType type)
 {
     Debug.Assert(type != null);
     if (type.IsAggregateType())
     {
         foreach (CType t in type.AsAggregateType().TypeAndBaseClassInterfaces())
         {
             yield return(t);
         }
     }
     else if (type.IsTypeParameterType())
     {
         foreach (CType t in type.AsTypeParameterType().GetEffectiveBaseClass().TypeAndBaseClassInterfaces())
         {
             yield return(t);
         }
         foreach (CType t in type.AsTypeParameterType().GetInterfaceBounds().AllConstraintInterfaces())
         {
             yield return(t);
         }
     }
 }
Ejemplo n.º 10
0
        private bool IsBaseClass(CType pDerived, CType pBase)
        {
            Debug.Assert(pDerived != null);
            Debug.Assert(pBase != null);
            // A base class has got to be a class. The derived type might be a struct.

            if (!pBase.isClassType())
            {
                return(false);
            }
            if (pDerived.IsNullableType())
            {
                pDerived = pDerived.AsNullableType().GetAts(ErrorContext);
                if (pDerived == null)
                {
                    return(false);
                }
            }

            if (!pDerived.IsAggregateType())
            {
                return(false);
            }

            AggregateType atsDer  = pDerived.AsAggregateType();
            AggregateType atsBase = pBase.AsAggregateType();
            AggregateType atsCur  = atsDer.GetBaseClass();

            while (atsCur != null)
            {
                if (atsCur == atsBase)
                {
                    return(true);
                }
                atsCur = atsCur.GetBaseClass();
            }
            return(false);
        }
Ejemplo n.º 11
0
            private bool bindExplicitConversionFromIListToArray(ArrayType arrayDest)
            {
                // 13.2.2
                //
                // The explicit reference conversions are:
                //
                // * From System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> and their base interfaces
                //   to a one-dimensional array-type S[], provided there is an implicit or explicit reference conversion from
                //   S[] to System.Collections.Generic.IList<T> or System.Collections.Generic.IReadOnlyList<T>. This is precisely when either S and T
                //   are the same type or there is an implicit or explicit reference conversion from S to T.

                if (arrayDest.rank != 1 || !_typeSrc.isInterfaceType() ||
                    _typeSrc.AsAggregateType().GetTypeArgsAll().Count != 1)
                {
                    return(false);
                }

                AggregateSymbol aggIList         = GetSymbolLoader().GetOptPredefAgg(PredefinedType.PT_G_ILIST);
                AggregateSymbol aggIReadOnlyList = GetSymbolLoader().GetOptPredefAgg(PredefinedType.PT_G_IREADONLYLIST);

                if ((aggIList == null ||
                     !GetSymbolLoader().IsBaseAggregate(aggIList, _typeSrc.AsAggregateType().getAggregate())) &&
                    (aggIReadOnlyList == null ||
                     !GetSymbolLoader().IsBaseAggregate(aggIReadOnlyList, _typeSrc.AsAggregateType().getAggregate())))
                {
                    return(false);
                }

                CType typeArr = arrayDest.GetElementType();
                CType typeLst = _typeSrc.AsAggregateType().GetTypeArgsAll()[0];

                Debug.Assert(!typeArr.IsNeverSameType());
                if (typeArr != typeLst && !CConversions.FExpRefConv(GetSymbolLoader(), typeArr, typeLst))
                {
                    return(false);
                }
                if (_needsExprDest)
                {
                    _binder.bindSimpleCast(_exprSrc, _exprTypeDest, out _exprDest, EXPRFLAG.EXF_REFCHECK);
                }
                return(true);
            }
Ejemplo n.º 12
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool UpperBoundConstructedInference(CType pSource, CType pDest)
        {
            if (!pSource.IsAggregateType())
            {
                return false;
            }

            AggregateType pConstructedSource = pSource.AsAggregateType();
            TypeArray pSourceArgs = pConstructedSource.GetTypeArgsAll();
            if (pSourceArgs.size == 0)
            {
                return false;
            }

            // SPEC:  Otherwise, if V is a constructed CType C<V1...Vk> and U is
            // SPEC:   C<U1...Uk> then an exact inference,
            // SPEC:   lower bound inference or upper bound inference
            // SPEC:   is made from each Ui to the corresponding Vi.

            if (pDest.IsAggregateType() &&
                pConstructedSource.GetOwningAggregate() == pDest.AsAggregateType().GetOwningAggregate())
            {
                if (pDest.isInterfaceType() || pDest.isDelegateType())
                {
                    UpperBoundTypeArgumentInference(pConstructedSource, pDest.AsAggregateType());
                }
                else
                {
                    ExactTypeArgumentInference(pConstructedSource, pDest.AsAggregateType());
                }
                return true;
            }

            // SPEC:  Otherwise, if U is a class CType C<U1...Uk> and V is a class CType which
            // SPEC:   inherits directly or indirectly from C<V1...Vk> then an exact ...

            if (UpperBoundClassInference(pConstructedSource, pDest))
            {
                return true;
            }

            // SPEC:  Otherwise, if U is an interface CType C<U1...Uk> and V is a class CType
            // SPEC:   or struct CType and there is a unique set V1...Vk such that V directly 
            // SPEC:   or indirectly implements C<V1...Vk> then an exact ...
            // SPEC:  ... and U is an interface CType ...

            if (UpperBoundInterfaceInference(pConstructedSource, pDest))
            {
                return true;
            }

            return false;
        }
Ejemplo n.º 13
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool LowerBoundClassInference(CType pSource, AggregateType pDest)
        {
            if (!pDest.isClassType())
            {
                return false;
            }

            // SPEC:  Otherwise, if V is a class CType C<V1...Vk> and U is a class CType which
            // SPEC:   inherits directly or indirectly from C<U1...Uk> 
            // SPEC:   then an exact inference is made from each Ui to the corresponding Vi.
            // SPEC:  Otherwise, if V is a class CType C<V1...Vk> and U is a CType parameter
            // SPEC:   with effective base class C<U1...Uk> 
            // SPEC:   then an exact inference is made from each Ui to the corresponding Vi.
            // SPEC:  Otherwise, if V is a class CType C<V1...Vk> and U is a CType parameter
            // SPEC:   with an effective base class which inherits directly or indirectly from
            // SPEC:   C<U1...Uk> then an exact inference is made
            // SPEC:   from each Ui to the corresponding Vi.

            AggregateType pSourceBase = null;

            if (pSource.isClassType())
            {
                pSourceBase = pSource.AsAggregateType().GetBaseClass();
            }
            else if (pSource.IsTypeParameterType())
            {
                pSourceBase = pSource.AsTypeParameterType().GetEffectiveBaseClass();
            }

            while (pSourceBase != null)
            {
                if (pSourceBase.GetOwningAggregate() == pDest.GetOwningAggregate())
                {
                    ExactTypeArgumentInference(pSourceBase, pDest);
                    return true;
                }
                pSourceBase = pSourceBase.GetBaseClass();
            }
            return false;
        }
Ejemplo n.º 14
0
        /***************************************************************************************************
        *   Determine whether there is an explicit or implicit reference conversion (or identity conversion)
        *   from typeSrc to typeDst. This is when:
        *
        *  13.2.3 Explicit reference conversions
        *
        *  The explicit reference conversions are:
        *   From object to any reference-type.
        *   From any class-type S to any class-type T, provided S is a base class of T.
        *   From any class-type S to any interface-type T, provided S is not sealed and provided S does not implement T.
        *   From any interface-type S to any class-type T, provided T is not sealed or provided T implements S.
        *   From any interface-type S to any interface-type T, provided S is not derived from T.
        *   From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the following are true:
        *   o   S and T differ only in element type. (In other words, S and T have the same number of dimensions.)
        *   o   An explicit reference conversion exists from SE to TE.
        *   From System.Array and the interfaces it implements, to any array-type.
        *   From System.Delegate and the interfaces it implements, to any delegate-type.
        *   From a one-dimensional array-type S[] to System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> and their base interfaces, provided there is an explicit reference conversion from S to T.
        *   From a generic delegate type S to generic delegate type  T, provided all of the follow are true:
        *   o Both types are constructed generic types of the same generic delegate type, D<X1,... Xk>.That is,
        *     S is D<S1,... Sk> and T is D<T1,... Tk>.
        *   o S is not compatible with or identical to T.
        *   o If type parameter Xi is declared to be invariant then Si must be identical to Ti.
        *   o If type parameter Xi is declared to be covariant ("out") then Si must be convertible
        *     to Ti via an identify conversion,  implicit reference conversion, or explicit reference conversion.
        *   o If type parameter Xi is declared to be contravariant ("in") then either Si must be identical to Ti,
        *      or Si and Ti must both be reference types.
        *   From System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> and their base interfaces to a one-dimensional array-type S[], provided there is an implicit or explicit reference conversion from S[] to System.Collections.Generic.IList<T> or System.Collections.Generic.IReadOnlyList<T>. This is precisely when either S and T are the same type or there is an implicit or explicit reference conversion from S to T.
        *
        *  For a type-parameter T that is known to be a reference type (§25.7), the following explicit reference conversions exist:
        *   From the effective base class C of T to T and from any base class of C to T.
        *   From any interface-type to T.
        *   From T to any interface-type I provided there isn’t already an implicit reference conversion from T to I.
        *   From a type-parameter U to T provided that T depends on U (§25.7). [Note: Since T is known to be a reference type, within the scope of T, the run-time type of U will always be a reference type, even if U is not known to be a reference type at compile-time. end note]
        *
        * Both src and dst are reference types and there is a builtin explicit conversion from
        *     src to dst.
        * Or src is a reference type and dst is a base type of src (in which case the conversion is
        *     implicit as well).
        * Or dst is a reference type and src is a base type of dst.
        *
        *   The latter two cases can happen with type variables even though the other type variable is not
        *   a reference type.
        ***************************************************************************************************/
        public static bool FExpRefConv(SymbolLoader loader, CType typeSrc, CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeDst != null);
            if (typeSrc.IsRefType() && typeDst.IsRefType())
            {
                // is there an implicit reference conversion in either direction?
                // this handles the bulk of the cases ...
                if (loader.HasIdentityOrImplicitReferenceConversion(typeSrc, typeDst) ||
                    loader.HasIdentityOrImplicitReferenceConversion(typeDst, typeSrc))
                {
                    return(true);
                }

                // For a type-parameter T that is known to be a reference type (§25.7), the following explicit reference conversions exist:
                // •    From any interface-type to T.
                // •    From T to any interface-type I provided there isn’t already an implicit reference conversion from T to I.
                if (typeSrc.isInterfaceType() && typeDst.IsTypeParameterType())
                {
                    return(true);
                }
                if (typeSrc.IsTypeParameterType() && typeDst.isInterfaceType())
                {
                    return(true);
                }

                // * From any class-type S to any interface-type T, provided S is not sealed
                // * From any interface-type S to any class-type T, provided T is not sealed
                // * From any interface-type S to any interface-type T, provided S is not derived from T.
                if (typeSrc.IsAggregateType() && typeDst.IsAggregateType())
                {
                    AggregateSymbol aggSrc  = typeSrc.AsAggregateType().getAggregate();
                    AggregateSymbol aggDest = typeDst.AsAggregateType().getAggregate();

                    if ((aggSrc.IsClass() && !aggSrc.IsSealed() && aggDest.IsInterface()) ||
                        (aggSrc.IsInterface() && aggDest.IsClass() && !aggDest.IsSealed()) ||
                        (aggSrc.IsInterface() && aggDest.IsInterface()))
                    {
                        return(true);
                    }
                }

                // *    From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the following are true:
                //     o    S and T differ only in element type. (In other words, S and T have the same number of dimensions.)
                //     o    An explicit reference conversion exists from SE to TE.
                if (typeSrc.IsArrayType() && typeDst.IsArrayType())
                {
                    return(typeSrc.AsArrayType().rank == typeDst.AsArrayType().rank&& FExpRefConv(loader, typeSrc.AsArrayType().GetElementType(), typeDst.AsArrayType().GetElementType()));
                }

                // *    From a one-dimensional array-type S[] to System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T>
                //      and their base interfaces, provided there is an explicit reference conversion from S to T.
                if (typeSrc.IsArrayType())
                {
                    if (typeSrc.AsArrayType().rank != 1 ||
                        !typeDst.isInterfaceType() || typeDst.AsAggregateType().GetTypeArgsAll().Size != 1)
                    {
                        return(false);
                    }

                    AggregateSymbol aggIList         = loader.GetOptPredefAgg(PredefinedType.PT_G_ILIST);
                    AggregateSymbol aggIReadOnlyList = loader.GetOptPredefAgg(PredefinedType.PT_G_IREADONLYLIST);

                    if ((aggIList == null ||
                         !loader.IsBaseAggregate(aggIList, typeDst.AsAggregateType().getAggregate())) &&
                        (aggIReadOnlyList == null ||
                         !loader.IsBaseAggregate(aggIReadOnlyList, typeDst.AsAggregateType().getAggregate())))
                    {
                        return(false);
                    }

                    return(FExpRefConv(loader, typeSrc.AsArrayType().GetElementType(), typeDst.AsAggregateType().GetTypeArgsAll().Item(0)));
                }

                if (typeDst.IsArrayType() && typeSrc.IsAggregateType())
                {
                    // * From System.Array and the interfaces it implements, to any array-type.
                    if (loader.HasIdentityOrImplicitReferenceConversion(loader.GetReqPredefType(PredefinedType.PT_ARRAY), typeSrc))
                    {
                        return(true);
                    }

                    // *    From System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> and their base interfaces to a
                    //      one-dimensional array-type S[], provided there is an implicit or explicit reference conversion from S[] to
                    //      System.Collections.Generic.IList<T> or System.Collections.Generic.IReadOnlyList<T>. This is precisely when either S and T
                    //      are the same type or there is an implicit or explicit reference conversion from S to T.
                    ArrayType     arrayDest  = typeDst.AsArrayType();
                    AggregateType aggtypeSrc = typeSrc.AsAggregateType();
                    if (arrayDest.rank != 1 || !typeSrc.isInterfaceType() ||
                        aggtypeSrc.GetTypeArgsAll().Size != 1)
                    {
                        return(false);
                    }

                    AggregateSymbol aggIList         = loader.GetOptPredefAgg(PredefinedType.PT_G_ILIST);
                    AggregateSymbol aggIReadOnlyList = loader.GetOptPredefAgg(PredefinedType.PT_G_IREADONLYLIST);

                    if ((aggIList == null ||
                         !loader.IsBaseAggregate(aggIList, aggtypeSrc.getAggregate())) &&
                        (aggIReadOnlyList == null ||
                         !loader.IsBaseAggregate(aggIReadOnlyList, aggtypeSrc.getAggregate())))
                    {
                        return(false);
                    }

                    CType typeArr = arrayDest.GetElementType();
                    CType typeLst = aggtypeSrc.GetTypeArgsAll().Item(0);

                    Debug.Assert(!typeArr.IsNeverSameType());
                    return(typeArr == typeLst || FExpRefConv(loader, typeArr, typeLst));
                }
                if (HasGenericDelegateExplicitReferenceConversion(loader, typeSrc, typeDst))
                {
                    return(true);
                }
            }
            else if (typeSrc.IsRefType())
            {
                // conversion of T . U, where T : class, U
                // .. these constraints implies where U : class
                return(loader.HasIdentityOrImplicitReferenceConversion(typeSrc, typeDst));
            }
            else if (typeDst.IsRefType())
            {
                // conversion of T . U, where U : class, T
                // .. these constraints implies where T : class
                return(loader.HasIdentityOrImplicitReferenceConversion(typeDst, typeSrc));
            }
            return(false);
        }
Ejemplo n.º 15
0
        public BetterType CompareTypes(TypeArray ta1, TypeArray ta2)
        {
            if (ta1 == ta2)
            {
                return(BetterType.Same);
            }
            if (ta1.Size != ta2.Size)
            {
                // The one with more parameters is more specific.
                return(ta1.Size > ta2.Size ? BetterType.Left : BetterType.Right);
            }

            BetterType nTot = BetterType.Neither;

            for (int i = 0; i < ta1.Size; i++)
            {
                CType      type1  = ta1.Item(i);
                CType      type2  = ta2.Item(i);
                BetterType nParam = BetterType.Neither;

LAgain:
                if (type1.GetTypeKind() != type2.GetTypeKind())
                {
                    if (type1.IsTypeParameterType())
                    {
                        nParam = BetterType.Right;
                    }
                    else if (type2.IsTypeParameterType())
                    {
                        nParam = BetterType.Left;
                    }
                }
                else
                {
                    switch (type1.GetTypeKind())
                    {
                    default:
                        Debug.Assert(false, "Bad kind in CompareTypes");
                        break;

                    case TypeKind.TK_TypeParameterType:
                    case TypeKind.TK_ErrorType:
                        break;

                    case TypeKind.TK_PointerType:
                    case TypeKind.TK_ParameterModifierType:
                    case TypeKind.TK_ArrayType:
                    case TypeKind.TK_NullableType:
                        type1 = type1.GetBaseOrParameterOrElementType();
                        type2 = type2.GetBaseOrParameterOrElementType();
                        goto LAgain;

                    case TypeKind.TK_AggregateType:
                        nParam = CompareTypes(type1.AsAggregateType().GetTypeArgsAll(), type2.AsAggregateType().GetTypeArgsAll());
                        break;
                    }
                }

                if (nParam == BetterType.Right || nParam == BetterType.Left)
                {
                    if (nTot == BetterType.Same || nTot == BetterType.Neither)
                    {
                        nTot = nParam;
                    }
                    else if (nParam != nTot)
                    {
                        return(BetterType.Neither);
                    }
                }
            }

            return(nTot);
        }
Ejemplo n.º 16
0
        public static bool TypeContainsType(CType type, CType typeFind)
        {
        LRecurse:  // Label used for "tail" recursion.

            if (type == typeFind || type.Equals(typeFind))
                return true;

            switch (type.GetTypeKind())
            {
                default:
                    Debug.Assert(false, "Bad Symbol kind in TypeContainsType");
                    return false;

                case TypeKind.TK_NullType:
                case TypeKind.TK_VoidType:
                case TypeKind.TK_OpenTypePlaceholderType:
                    // There should only be a single instance of these.
                    Debug.Assert(typeFind.GetTypeKind() != type.GetTypeKind());
                    return false;

                case TypeKind.TK_ArrayType:
                case TypeKind.TK_NullableType:
                case TypeKind.TK_ParameterModifierType:
                case TypeKind.TK_PointerType:
                    type = type.GetBaseOrParameterOrElementType();
                    goto LRecurse;

                case TypeKind.TK_AggregateType:
                    { // BLOCK
                        AggregateType ats = type.AsAggregateType();

                        for (int i = 0; i < ats.GetTypeArgsAll().Size; i++)
                        {
                            if (TypeContainsType(ats.GetTypeArgsAll().Item(i), typeFind))
                                return true;
                        }
                    }
                    return false;

                case TypeKind.TK_ErrorType:
                    if (type.AsErrorType().HasParent())
                    {
                        ErrorType err = type.AsErrorType();
                        Debug.Assert(err.nameText != null && err.typeArgs != null);

                        for (int i = 0; i < err.typeArgs.Size; i++)
                        {
                            if (TypeContainsType(err.typeArgs.Item(i), typeFind))
                                return true;
                        }
                        if (err.HasTypeParent())
                        {
                            type = err.GetTypeParent();
                            goto LRecurse;
                        }
                    }
                    return false;

                case TypeKind.TK_TypeParameterType:
                    return false;
            }
        }
Ejemplo n.º 17
0
        private CType SubstTypeCore(CType type, SubstContext pctx)
        {
            CType typeSrc;
            CType typeDst;

            switch (type.GetTypeKind())
            {
                default:
                    Debug.Assert(false);
                    return type;

                case TypeKind.TK_NullType:
                case TypeKind.TK_VoidType:
                case TypeKind.TK_OpenTypePlaceholderType:
                case TypeKind.TK_MethodGroupType:
                case TypeKind.TK_BoundLambdaType:
                case TypeKind.TK_UnboundLambdaType:
                case TypeKind.TK_NaturalIntegerType:
                case TypeKind.TK_ArgumentListType:
                    return type;

                case TypeKind.TK_ParameterModifierType:
                    typeDst = SubstTypeCore(typeSrc = type.AsParameterModifierType().GetParameterType(), pctx);
                    return (typeDst == typeSrc) ? type : GetParameterModifier(typeDst, type.AsParameterModifierType().isOut);

                case TypeKind.TK_ArrayType:
                    typeDst = SubstTypeCore(typeSrc = type.AsArrayType().GetElementType(), pctx);
                    return (typeDst == typeSrc) ? type : GetArray(typeDst, type.AsArrayType().rank);

                case TypeKind.TK_PointerType:
                    typeDst = SubstTypeCore(typeSrc = type.AsPointerType().GetReferentType(), pctx);
                    return (typeDst == typeSrc) ? type : GetPointer(typeDst);

                case TypeKind.TK_NullableType:
                    typeDst = SubstTypeCore(typeSrc = type.AsNullableType().GetUnderlyingType(), pctx);
                    return (typeDst == typeSrc) ? type : GetNullable(typeDst);

                case TypeKind.TK_AggregateType:
                    if (type.AsAggregateType().GetTypeArgsAll().size > 0)
                    {
                        AggregateType ats = type.AsAggregateType();

                        TypeArray typeArgs = SubstTypeArray(ats.GetTypeArgsAll(), pctx);
                        if (ats.GetTypeArgsAll() != typeArgs)
                            return GetAggregate(ats.getAggregate(), typeArgs);
                    }
                    return type;

                case TypeKind.TK_ErrorType:
                    if (type.AsErrorType().HasParent())
                    {
                        ErrorType err = type.AsErrorType();
                        Debug.Assert(err.nameText != null && err.typeArgs != null);

                        CType pParentType = null;
                        if (err.HasTypeParent())
                        {
                            pParentType = SubstTypeCore(err.GetTypeParent(), pctx);
                        }

                        TypeArray typeArgs = SubstTypeArray(err.typeArgs, pctx);
                        if (typeArgs != err.typeArgs || (err.HasTypeParent() && pParentType != err.GetTypeParent()))
                        {
                            return GetErrorType(pParentType, err.GetNSParent(), err.nameText, typeArgs);
                        }
                    }
                    return type;

                case TypeKind.TK_TypeParameterType:
                    {
                        TypeParameterSymbol tvs = type.AsTypeParameterType().GetTypeParameterSymbol();
                        int index = tvs.GetIndexInTotalParameters();
                        if (tvs.IsMethodTypeParameter())
                        {
                            if ((pctx.grfst & SubstTypeFlags.DenormMeth) != 0 && tvs.parent != null)
                                return type;
                            Debug.Assert(tvs.GetIndexInOwnParameters() == tvs.GetIndexInTotalParameters());
                            if (index < pctx.ctypeMeth)
                            {
                                Debug.Assert(pctx.prgtypeMeth != null);
                                return pctx.prgtypeMeth[index];
                            }
                            else
                            {
                                return ((pctx.grfst & SubstTypeFlags.NormMeth) != 0 ? GetStdMethTypeVar(index) : type);
                            }
                        }
                        if ((pctx.grfst & SubstTypeFlags.DenormClass) != 0 && tvs.parent != null)
                            return type;
                        return index < pctx.ctypeCls ? pctx.prgtypeCls[index] :
                               ((pctx.grfst & SubstTypeFlags.NormClass) != 0 ? GetStdClsTypeVar(index) : type);
                    }
            }
        }
Ejemplo n.º 18
0
 private AggregateType GetUserDefinedBinopArgumentType(CType type)
 {
     for (; ;)
     {
         switch (type.GetTypeKind())
         {
             case TypeKind.TK_NullableType:
                 type = type.StripNubs();
                 break;
             case TypeKind.TK_TypeParameterType:
                 type = type.AsTypeParameterType().GetEffectiveBaseClass();
                 break;
             case TypeKind.TK_AggregateType:
                 if ((type.isClassType() || type.isStructType()) && !type.AsAggregateType().getAggregate().IsSkipUDOps())
                 {
                     return type.AsAggregateType();
                 }
                 return null;
             default:
                 return null;
         }
     }
 }
Ejemplo n.º 19
0
        private AggregateType GetEnumBinOpType(ExpressionKind ek, CType argType1, CType argType2, out AggregateType ppEnumType)
        {
            Debug.Assert(argType1.isEnumType() || argType2.isEnumType());

            AggregateType type1 = argType1.AsAggregateType();
            AggregateType type2 = argType2.AsAggregateType();

            AggregateType typeEnum = type1.isEnumType() ? type1 : type2;

            Debug.Assert(type1 == typeEnum || type1 == typeEnum.underlyingEnumType());
            Debug.Assert(type2 == typeEnum || type2 == typeEnum.underlyingEnumType());

            AggregateType typeDst = typeEnum;

            switch (ek)
            {
                case ExpressionKind.EK_BITAND:
                case ExpressionKind.EK_BITOR:
                case ExpressionKind.EK_BITXOR:
                    Debug.Assert(type1 == type2);
                    break;

                case ExpressionKind.EK_ADD:
                    Debug.Assert(type1 != type2);
                    break;

                case ExpressionKind.EK_SUB:
                    if (type1 == type2)
                        typeDst = typeEnum.underlyingEnumType();
                    break;

                default:
                    Debug.Assert(ek.isRelational());
                    typeDst = GetReqPDT(PredefinedType.PT_BOOL);
                    break;
            }

            ppEnumType = typeEnum;
            return typeDst;
        }
Ejemplo n.º 20
0
            /*
             * BindExplicitConversion
             *
             * This is a complex routine with complex parameter. Generally, this should
             * be called through one of the helper methods that insulates you
             * from the complexity of the interface. This routine handles all the logic
             * associated with explicit conversions.
             *
             * Note that this function calls BindImplicitConversion first, so the main
             * logic is only concerned with conversions that can be made explicitly, but
             * not implicitly.
             */
            public bool Bind()
            {
                // To test for a standard conversion, call canConvert(exprSrc, typeDest, STANDARDANDCONVERTTYPE.NOUDC) and
                // canConvert(typeDest, typeSrc, STANDARDANDCONVERTTYPE.NOUDC).
                Debug.Assert((_flags & CONVERTTYPE.STANDARD) == 0);

                // 13.2 Explicit conversions
                //
                // The following conversions are classified as explicit conversions:
                //
                // * All implicit conversions
                // * Explicit numeric conversions
                // * Explicit enumeration conversions
                // * Explicit reference conversions
                // * Explicit interface conversions
                // * Unboxing conversions
                // * Explicit type parameter conversions
                // * User-defined explicit conversions
                // * Explicit nullable conversions
                // * Lifted user-defined explicit conversions
                //
                // Explicit conversions can occur in cast expressions (14.6.6).
                //
                // The explicit conversions that are not implicit conversions are conversions that cannot be
                // proven always to succeed, conversions that are known possibly to lose information, and
                // conversions across domains of types sufficiently different to merit explicit notation.

                // The set of explicit conversions includes all implicit conversions.

                // Don't try user-defined conversions now because we'll try them again later.
                if (_binder.BindImplicitConversion(_exprSrc, _typeSrc, _exprTypeDest, _pDestinationTypeForLambdaErrorReporting, _needsExprDest, out _exprDest, _flags | CONVERTTYPE.ISEXPLICIT))
                {
                    return(true);
                }

                if (_typeSrc == null || _typeDest == null || _typeSrc.IsErrorType() ||
                    _typeDest.IsErrorType() || _typeDest.IsNeverSameType())
                {
                    return(false);
                }

                if (_typeDest.IsNullableType())
                {
                    // This is handled completely by BindImplicitConversion.
                    return(false);
                }

                if (_typeSrc.IsNullableType())
                {
                    return(bindExplicitConversionFromNub());
                }

                if (bindExplicitConversionFromArrayToIList())
                {
                    return(true);
                }

                // if we were casting an integral constant to another constant type,
                // then, if the constant were in range, then the above call would have succeeded.

                // But it failed, and so we know that the constant is not in range

                switch (_typeDest.GetTypeKind())
                {
                default:
                    VSFAIL("Bad type kind");
                    return(false);

                case TypeKind.TK_VoidType:
                    return(false);    // Can't convert to a method group or anon method.

                case TypeKind.TK_NullType:
                    return(false);     // Can never convert TO the null type.

                case TypeKind.TK_TypeParameterType:
                    if (bindExplicitConversionToTypeVar())
                    {
                        return(true);
                    }
                    break;

                case TypeKind.TK_ArrayType:
                    if (bindExplicitConversionToArray(_typeDest.AsArrayType()))
                    {
                        return(true);
                    }
                    break;

                case TypeKind.TK_PointerType:
                    if (bindExplicitConversionToPointer())
                    {
                        return(true);
                    }
                    break;

                case TypeKind.TK_AggregateType:
                {
                    AggCastResult result = bindExplicitConversionToAggregate(_typeDest.AsAggregateType());

                    if (result == AggCastResult.Success)
                    {
                        return(true);
                    }
                    if (result == AggCastResult.Abort)
                    {
                        return(false);
                    }
                    break;
                }
                }

                // No built-in conversion was found. Maybe a user-defined conversion?
                if (0 == (_flags & CONVERTTYPE.NOUDC))
                {
                    return(_binder.bindUserDefinedConversion(_exprSrc, _typeSrc, _typeDest, _needsExprDest, out _exprDest, false));
                }
                return(false);
            }
Ejemplo n.º 21
0
        ////////////////////////////////////////////////////////////////////////////////
        // For a base call we need to remap from the virtual to the specific override 
        // to invoke.  This is also used to map a virtual on pObject (like ToString) to 
        // the specific override when the pObject is a simple type (int, bool, char, 
        // etc). In these cases it is safe to assume that any override won't later be 
        // removed.... We start searching from "typeObj" up the superclass hierarchy 
        // until we find a method with an exact signature match.

        public static void RemapToOverride(SymbolLoader symbolLoader, SymWithType pswt, CType typeObj)
        {
            // For a property/indexer we remap the accessors, not the property/indexer.
            // Since every event has both accessors we remap the event instead of the accessors.
            Debug.Assert(pswt && (pswt.Sym.IsMethodSymbol() || pswt.Sym.IsEventSymbol() || pswt.Sym.IsMethodOrPropertySymbol()));
            Debug.Assert(typeObj != null);

            // Don't remap static or interface methods.
            if (typeObj.IsNullableType())
            {
                typeObj = typeObj.AsNullableType().GetAts(symbolLoader.GetErrorContext());
                if (typeObj == null)
                {
                    VSFAIL("Why did GetAts return null?");
                    return;
                }
            }

            // Don't remap non-virtual members
            if (!typeObj.IsAggregateType() || typeObj.isInterfaceType() || !pswt.Sym.IsVirtual())
            {
                return;
            }

            symbmask_t mask = pswt.Sym.mask();

            AggregateType atsObj = typeObj.AsAggregateType();

            // Search for an override version of the method.
            while (atsObj != null && atsObj.getAggregate() != pswt.Sym.parent)
            {
                for (Symbol symT = symbolLoader.LookupAggMember(pswt.Sym.name, atsObj.getAggregate(), mask);
                     symT != null;
                     symT = symbolLoader.LookupNextSym(symT, atsObj.getAggregate(), mask))
                {
                    if (symT.IsOverride() && (symT.SymBaseVirtual() == pswt.Sym || symT.SymBaseVirtual() == pswt.Sym.SymBaseVirtual()))
                    {
                        pswt.Set(symT, atsObj);
                        return;
                    }
                }
                atsObj = atsObj.GetBaseClass();
            }
        }
Ejemplo n.º 22
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool UpperBoundInterfaceInference(AggregateType pSource, CType pDest)
        {
            if (!pSource.isInterfaceType())
            {
                return false;
            }

            // SPEC:  Otherwise, if U is an interface CType C<U1...Uk> and V is a class CType
            // SPEC:   or struct CType and there is a unique set V1...Vk such that V directly 
            // SPEC:   or indirectly implements C<V1...Vk> then an exact ...
            // SPEC:  ... and U is an interface CType ...

            if (!pDest.isStructType() && !pDest.isClassType() &&
                !pDest.isInterfaceType())
            {
                return false;
            }

            var interfaces = pDest.AllPossibleInterfaces();
            AggregateType pInterface = null;
            foreach (AggregateType pCurrent in interfaces)
            {
                if (pCurrent.GetOwningAggregate() == pSource.GetOwningAggregate())
                {
                    if (pInterface == null)
                    {
                        pInterface = pCurrent;
                    }
                    else if (pInterface != pCurrent)
                    {
                        // Not unique. Bail out.
                        return false;
                    }
                }
            }
            if (pInterface == null)
            {
                return false;
            }
            UpperBoundTypeArgumentInference(pInterface, pDest.AsAggregateType());
            return true;
        }
Ejemplo n.º 23
0
        ////////////////////////////////////////////////////////////////////////////////
        //
        // Output types
        //
        private bool DoesOutputTypeContain(EXPR pSource, CType pDest,
            TypeParameterType pParam)
        {
            // SPEC: If E is a method group or an anonymous function and T is a delegate
            // SPEC: CType or expression tree CType then the return CType of T is an output CType
            // SPEC: of E with CType T.

            pDest = pDest.GetDelegateTypeOfPossibleExpression();
            if (!pDest.isDelegateType())
            {
                return false;
            }

            if (!pSource.isUNBOUNDLAMBDA() && !pSource.isMEMGRP())
            {
                return false;
            }

            CType pDelegateReturn = pDest.AsAggregateType().GetDelegateReturnType(GetSymbolLoader());
            if (pDelegateReturn == null)
            {
                return false;
            }
            return TypeManager.TypeContainsType(pDelegateReturn, pParam);
        }
Ejemplo n.º 24
0
        private bool HasImplicitReferenceConversion(CType pSource, CType pDest)
        {
            Debug.Assert(pSource != null);
            Debug.Assert(pDest != null);

            // The implicit reference conversions are:
            // * From any reference type to Object.
            if (pSource.IsRefType() && pDest.isPredefType(PredefinedType.PT_OBJECT))
            {
                return(true);
            }
            // * From any class type S to any class type T provided S is derived from T.
            if (pSource.isClassType() && pDest.isClassType() && IsBaseClass(pSource, pDest))
            {
                return(true);
            }

            // ORIGINAL RULES:
            //    // * From any class type S to any interface type T provided S implements T.
            //    if (pSource.isClassType() && pDest.isInterfaceType() && IsBaseInterface(pSource, pDest))
            //    {
            //        return true;
            //    }
            //    // * from any interface type S to any interface type T, provided S is derived from T.
            //    if (pSource.isInterfaceType() && pDest.isInterfaceType() && IsBaseInterface(pSource, pDest))
            //    {
            //        return true;
            //    }

            // VARIANCE EXTENSIONS:
            // * From any class type S to any interface type T provided S implements an interface
            //   convertible to T.
            // * From any interface type S to any interface type T provided S implements an interface
            //   convertible to T.
            // * From any interface type S to any interface type T provided S is not T and S is
            //   an interface convertible to T.

            if (pSource.isClassType() && pDest.isInterfaceType() && HasAnyBaseInterfaceConversion(pSource, pDest))
            {
                return(true);
            }
            if (pSource.isInterfaceType() && pDest.isInterfaceType() && HasAnyBaseInterfaceConversion(pSource, pDest))
            {
                return(true);
            }
            if (pSource.isInterfaceType() && pDest.isInterfaceType() && pSource != pDest &&
                HasInterfaceConversion(pSource.AsAggregateType(), pDest.AsAggregateType()))
            {
                return(true);
            }

            // * From an array type S with an element type SE to an array type T with element type TE
            //   provided that all of the following are true:
            //   * S and T differ only in element type. In other words, S and T have the same number of dimensions.
            //   * Both SE and TE are reference types.
            //   * An implicit reference conversion exists from SE to TE.
            if (pSource.IsArrayType() && pDest.IsArrayType() &&
                HasCovariantArrayConversion(pSource.AsArrayType(), pDest.AsArrayType()))
            {
                return(true);
            }
            // * From any array type to System.Array or any interface implemented by System.Array.
            if (pSource.IsArrayType() && (pDest.isPredefType(PredefinedType.PT_ARRAY) ||
                                          IsBaseInterface(GetReqPredefType(PredefinedType.PT_ARRAY, false), pDest)))
            {
                return(true);
            }
            // * From a single-dimensional array type S[] to IList<T> and its base
            //   interfaces, provided that there is an implicit identity or reference
            //   conversion from S to T.
            if (pSource.IsArrayType() && HasArrayConversionToInterface(pSource.AsArrayType(), pDest))
            {
                return(true);
            }

            // * From any delegate type to System.Delegate
            //
            // SPEC OMISSION:
            //
            // The spec should actually say
            //
            // * From any delegate type to System.Delegate
            // * From any delegate type to System.MulticastDelegate
            // * From any delegate type to any interface implemented by System.MulticastDelegate
            if (pSource.isDelegateType() &&
                (pDest.isPredefType(PredefinedType.PT_MULTIDEL) ||
                 pDest.isPredefType(PredefinedType.PT_DELEGATE) ||
                 IsBaseInterface(GetReqPredefType(PredefinedType.PT_MULTIDEL, false), pDest)))
            {
                return(true);
            }

            // VARIANCE EXTENSION:
            // * From any delegate type S to a delegate type T provided S is not T and
            //   S is a delegate convertible to T

            if (pSource.isDelegateType() && pDest.isDelegateType() &&
                HasDelegateConversion(pSource.AsAggregateType(), pDest.AsAggregateType()))
            {
                return(true);
            }

            // * From the null literal to any reference type
            // NOTE: We extend the specification here. The C# 3.0 spec does not describe
            // a "null type". Rather, it says that the null literal is typeless, and is
            // convertible to any reference or nullable type. However, the C# 2.0 and 3.0
            // implementations have a "null type" which some expressions other than the
            // null literal may have. (For example, (null??null), which is also an
            // extension to the specification.)
            if (pSource.IsNullType() && pDest.IsRefType())
            {
                return(true);
            }
            if (pSource.IsNullType() && pDest.IsNullableType())
            {
                return(true);
            }

            // * Implicit conversions involving type parameters that are known to be reference types.
            if (pSource.IsTypeParameterType() &&
                HasImplicitReferenceTypeParameterConversion(pSource.AsTypeParameterType(), pDest))
            {
                return(true);
            }

            return(false);
        }
Ejemplo n.º 25
0
        // Check the constraints of any type arguments in the given Type.
        public static bool CheckConstraints(CSemanticChecker checker, ErrorHandling errHandling, CType type, CheckConstraintsFlags flags)
        {
            type = type.GetNakedType(false);

            if (type.IsNullableType())
            {
                CType typeT = type.AsNullableType().GetAts(checker.GetErrorContext());
                if (typeT != null)
                {
                    type = typeT;
                }
                else
                {
                    type = type.GetNakedType(true);
                }
            }

            if (!type.IsAggregateType())
            {
                return(true);
            }

            AggregateType ats = type.AsAggregateType();

            if (ats.GetTypeArgsAll().Count == 0)
            {
                // Common case: there are no type vars, so there are no constraints.
                ats.fConstraintsChecked = true;
                ats.fConstraintError    = false;
                return(true);
            }

            if (ats.fConstraintsChecked)
            {
                // Already checked.
                if (!ats.fConstraintError || (flags & CheckConstraintsFlags.NoDupErrors) != 0)
                {
                    // No errors or no need to report errors again.
                    return(!ats.fConstraintError);
                }
            }

            TypeArray typeVars     = ats.getAggregate().GetTypeVars();
            TypeArray typeArgsThis = ats.GetTypeArgsThis();
            TypeArray typeArgsAll  = ats.GetTypeArgsAll();

            Debug.Assert(typeVars.Count == typeArgsThis.Count);

            if (!ats.fConstraintsChecked)
            {
                ats.fConstraintsChecked = true;
                ats.fConstraintError    = false;
            }

            // Check the outer type first. If CheckConstraintsFlags.Outer is not specified and the
            // outer type has already been checked then don't bother checking it.
            if (ats.outerType != null && ((flags & CheckConstraintsFlags.Outer) != 0 || !ats.outerType.fConstraintsChecked))
            {
                CheckConstraints(checker, errHandling, ats.outerType, flags);
                ats.fConstraintError |= ats.outerType.fConstraintError;
            }

            if (typeVars.Count > 0)
            {
                ats.fConstraintError |= !CheckConstraintsCore(checker, errHandling, ats.getAggregate(), typeVars, typeArgsThis, typeArgsAll, null, (flags & CheckConstraintsFlags.NoErrors));
            }

            // Now check type args themselves.
            for (int i = 0; i < typeArgsThis.Count; i++)
            {
                CType arg = typeArgsThis[i].GetNakedType(true);
                if (arg.IsAggregateType() && !arg.AsAggregateType().fConstraintsChecked)
                {
                    CheckConstraints(checker, errHandling, arg.AsAggregateType(), flags | CheckConstraintsFlags.Outer);
                    if (arg.AsAggregateType().fConstraintError)
                    {
                        ats.fConstraintError = true;
                    }
                }
            }
            return(!ats.fConstraintError);
        }
Ejemplo n.º 26
0
        private static Type CalculateAssociatedSystemType(CType src)
        {
            Type result = null;

            switch (src.GetTypeKind())
            {
            case TypeKind.TK_ArrayType:
                ArrayType a           = src.AsArrayType();
                Type      elementType = a.GetElementType().AssociatedSystemType;
                if (a.rank == 1)
                {
                    result = elementType.MakeArrayType();
                }
                else
                {
                    result = elementType.MakeArrayType(a.rank);
                }
                break;

            case TypeKind.TK_NullableType:
                NullableType n = src.AsNullableType();
                Type         underlyingType = n.GetUnderlyingType().AssociatedSystemType;
                result = typeof(Nullable <>).MakeGenericType(underlyingType);
                break;

            case TypeKind.TK_PointerType:
                PointerType p            = src.AsPointerType();
                Type        referentType = p.GetReferentType().AssociatedSystemType;
                result = referentType.MakePointerType();
                break;

            case TypeKind.TK_ParameterModifierType:
                ParameterModifierType r = src.AsParameterModifierType();
                Type parameterType      = r.GetParameterType().AssociatedSystemType;
                result = parameterType.MakeByRefType();
                break;

            case TypeKind.TK_AggregateType:
                result = CalculateAssociatedSystemTypeForAggregate(src.AsAggregateType());
                break;

            case TypeKind.TK_TypeParameterType:
                TypeParameterType t = src.AsTypeParameterType();
                Type parentType     = null;
                if (t.IsMethodTypeParameter())
                {
                    MethodInfo meth = t.GetOwningSymbol().AsMethodSymbol().AssociatedMemberInfo as MethodInfo;
                    result = meth.GetGenericArguments()[t.GetIndexInOwnParameters()];
                }
                else
                {
                    parentType = t.GetOwningSymbol().AsAggregateSymbol().AssociatedSystemType;
                    result     = parentType.GetTypeInfo().GenericTypeParameters[t.GetIndexInOwnParameters()];
                }
                break;

            case TypeKind.TK_ArgumentListType:
            case TypeKind.TK_BoundLambdaType:
            case TypeKind.TK_ErrorType:
            case TypeKind.TK_MethodGroupType:
            case TypeKind.TK_NaturalIntegerType:
            case TypeKind.TK_NullType:
            case TypeKind.TK_OpenTypePlaceholderType:
            case TypeKind.TK_UnboundLambdaType:
            case TypeKind.TK_VoidType:

            default:
                break;
            }

            Debug.Assert(result != null || src.GetTypeKind() == TypeKind.TK_AggregateType);
            return(result);
        }
Ejemplo n.º 27
0
        public bool SubstEqualTypesCore(CType typeDst, CType typeSrc, SubstContext pctx)
        {
        LRecurse:  // Label used for "tail" recursion.

            if (typeDst == typeSrc || typeDst.Equals(typeSrc))
            {
                return true;
            }

            switch (typeSrc.GetTypeKind())
            {
                default:
                    Debug.Assert(false, "Bad Symbol kind in SubstEqualTypesCore");
                    return false;

                case TypeKind.TK_NullType:
                case TypeKind.TK_VoidType:
                case TypeKind.TK_OpenTypePlaceholderType:
                    // There should only be a single instance of these.
                    Debug.Assert(typeDst.GetTypeKind() != typeSrc.GetTypeKind());
                    return false;

                case TypeKind.TK_ArrayType:
                    if (typeDst.GetTypeKind() != TypeKind.TK_ArrayType || typeDst.AsArrayType().rank != typeSrc.AsArrayType().rank)
                        return false;
                    goto LCheckBases;

                case TypeKind.TK_ParameterModifierType:
                    if (typeDst.GetTypeKind() != TypeKind.TK_ParameterModifierType ||
                        ((pctx.grfst & SubstTypeFlags.NoRefOutDifference) == 0 &&
                         typeDst.AsParameterModifierType().isOut != typeSrc.AsParameterModifierType().isOut))
                        return false;
                    goto LCheckBases;

                case TypeKind.TK_PointerType:
                case TypeKind.TK_NullableType:
                    if (typeDst.GetTypeKind() != typeSrc.GetTypeKind())
                        return false;
                    LCheckBases:
                    typeSrc = typeSrc.GetBaseOrParameterOrElementType();
                    typeDst = typeDst.GetBaseOrParameterOrElementType();
                    goto LRecurse;

                case TypeKind.TK_AggregateType:
                    if (typeDst.GetTypeKind() != TypeKind.TK_AggregateType)
                        return false;
                    { // BLOCK
                        AggregateType atsSrc = typeSrc.AsAggregateType();
                        AggregateType atsDst = typeDst.AsAggregateType();

                        if (atsSrc.getAggregate() != atsDst.getAggregate())
                            return false;

                        Debug.Assert(atsSrc.GetTypeArgsAll().Size == atsDst.GetTypeArgsAll().Size);

                        // All the args must unify.
                        for (int i = 0; i < atsSrc.GetTypeArgsAll().Size; i++)
                        {
                            if (!SubstEqualTypesCore(atsDst.GetTypeArgsAll().Item(i), atsSrc.GetTypeArgsAll().Item(i), pctx))
                                return false;
                        }
                    }
                    return true;

                case TypeKind.TK_ErrorType:
                    if (!typeDst.IsErrorType() || !typeSrc.AsErrorType().HasParent() || !typeDst.AsErrorType().HasParent())
                        return false;
                    {
                        ErrorType errSrc = typeSrc.AsErrorType();
                        ErrorType errDst = typeDst.AsErrorType();
                        Debug.Assert(errSrc.nameText != null && errSrc.typeArgs != null);
                        Debug.Assert(errDst.nameText != null && errDst.typeArgs != null);

                        if (errSrc.nameText != errDst.nameText || errSrc.typeArgs.Size != errDst.typeArgs.Size)
                            return false;

                        if (errSrc.HasTypeParent() != errDst.HasTypeParent())
                        {
                            return false;
                        }
                        if (errSrc.HasTypeParent())
                        {
                            if (errSrc.GetTypeParent() != errDst.GetTypeParent())
                            {
                                return false;
                            }
                            if (!SubstEqualTypesCore(errDst.GetTypeParent(), errSrc.GetTypeParent(), pctx))
                            {
                                return false;
                            }
                        }
                        else
                        {
                            if (errSrc.GetNSParent() != errDst.GetNSParent())
                            {
                                return false;
                            }
                        }

                        // All the args must unify.
                        for (int i = 0; i < errSrc.typeArgs.Size; i++)
                        {
                            if (!SubstEqualTypesCore(errDst.typeArgs.Item(i), errSrc.typeArgs.Item(i), pctx))
                                return false;
                        }
                    }
                    return true;

                case TypeKind.TK_TypeParameterType:
                    { // BLOCK
                        TypeParameterSymbol tvs = typeSrc.AsTypeParameterType().GetTypeParameterSymbol();
                        int index = tvs.GetIndexInTotalParameters();

                        if (tvs.IsMethodTypeParameter())
                        {
                            if ((pctx.grfst & SubstTypeFlags.DenormMeth) != 0 && tvs.parent != null)
                            {
                                // typeDst == typeSrc was handled above.
                                Debug.Assert(typeDst != typeSrc);
                                return false;
                            }
                            Debug.Assert(tvs.GetIndexInOwnParameters() == tvs.GetIndexInTotalParameters());
                            Debug.Assert(pctx.prgtypeMeth == null || tvs.GetIndexInTotalParameters() < pctx.ctypeMeth);
                            if (index < pctx.ctypeMeth && pctx.prgtypeMeth != null)
                            {
                                return typeDst == pctx.prgtypeMeth[index];
                            }
                            if ((pctx.grfst & SubstTypeFlags.NormMeth) != 0)
                            {
                                return typeDst == GetStdMethTypeVar(index);
                            }
                        }
                        else
                        {
                            if ((pctx.grfst & SubstTypeFlags.DenormClass) != 0 && tvs.parent != null)
                            {
                                // typeDst == typeSrc was handled above.
                                Debug.Assert(typeDst != typeSrc);
                                return false;
                            }
                            Debug.Assert(pctx.prgtypeCls == null || tvs.GetIndexInTotalParameters() < pctx.ctypeCls);
                            if (index < pctx.ctypeCls)
                                return typeDst == pctx.prgtypeCls[index];
                            if ((pctx.grfst & SubstTypeFlags.NormClass) != 0)
                                return typeDst == GetStdClsTypeVar(index);
                        }
                    }
                    return false;
            }
        }
Ejemplo n.º 28
0
 private bool HasAnyBaseInterfaceConversion(CType pDerived, CType pBase)
 {
     if (!pBase.isInterfaceType())
     {
         return false;
     }
     if (!pDerived.IsAggregateType())
     {
         return false;
     }
     AggregateType atsDer = pDerived.AsAggregateType();
     while (atsDer != null)
     {
         TypeArray ifacesAll = atsDer.GetIfacesAll();
         for (int i = 0; i < ifacesAll.size; i++)
         {
             if (HasInterfaceConversion(ifacesAll.Item(i).AsAggregateType(), pBase.AsAggregateType()))
             {
                 return true;
             }
         }
         atsDer = atsDer.GetBaseClass();
     }
     return false;
 }
Ejemplo n.º 29
0
        public static bool TypeContainsTyVars(CType type, TypeArray typeVars)
        {
        LRecurse:  // Label used for "tail" recursion.
            switch (type.GetTypeKind())
            {
                default:
                    Debug.Assert(false, "Bad Symbol kind in TypeContainsTyVars");
                    return false;

                case TypeKind.TK_UnboundLambdaType:
                case TypeKind.TK_BoundLambdaType:
                case TypeKind.TK_NullType:
                case TypeKind.TK_VoidType:
                case TypeKind.TK_OpenTypePlaceholderType:
                case TypeKind.TK_MethodGroupType:
                    return false;

                case TypeKind.TK_ArrayType:
                case TypeKind.TK_NullableType:
                case TypeKind.TK_ParameterModifierType:
                case TypeKind.TK_PointerType:
                    type = type.GetBaseOrParameterOrElementType();
                    goto LRecurse;

                case TypeKind.TK_AggregateType:
                    { // BLOCK
                        AggregateType ats = type.AsAggregateType();

                        for (int i = 0; i < ats.GetTypeArgsAll().Size; i++)
                        {
                            if (TypeContainsTyVars(ats.GetTypeArgsAll().Item(i), typeVars))
                            {
                                return true;
                            }
                        }
                    }
                    return false;

                case TypeKind.TK_ErrorType:
                    if (type.AsErrorType().HasParent())
                    {
                        ErrorType err = type.AsErrorType();
                        Debug.Assert(err.nameText != null && err.typeArgs != null);

                        for (int i = 0; i < err.typeArgs.Size; i++)
                        {
                            if (TypeContainsTyVars(err.typeArgs.Item(i), typeVars))
                            {
                                return true;
                            }
                        }
                        if (err.HasTypeParent())
                        {
                            type = err.GetTypeParent();
                            goto LRecurse;
                        }
                    }
                    return false;

                case TypeKind.TK_TypeParameterType:
                    if (typeVars != null && typeVars.Size > 0)
                    {
                        int ivar = type.AsTypeParameterType().GetIndexInTotalParameters();
                        return ivar < typeVars.Size && type == typeVars.Item(ivar);
                    }
                    return true;
            }
        }
Ejemplo n.º 30
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool MethodGroupReturnTypeInference(EXPR pSource, CType pType)
        {
            // SPEC:  Otherwise, if E is a method group and T is a delegate CType or
            // SPEC:   expression tree CType with parameter types T1...Tk and return
            // SPEC:   CType Tb and overload resolution of E with the types T1...Tk
            // SPEC:   yields a single method with return CType U then a lower-bound
            // SPEC:   inference is made from U to Tb.

            if (!pSource.isMEMGRP())
            {
                return false;
            }
            pType = pType.GetDelegateTypeOfPossibleExpression();
            if (!pType.isDelegateType())
            {
                return false;
            }
            AggregateType pDelegateType = pType.AsAggregateType();
            CType pDelegateReturnType = pDelegateType.GetDelegateReturnType(GetSymbolLoader());
            if (pDelegateReturnType == null)
            {
                return false;
            }
            if (pDelegateReturnType.IsVoidType())
            {
                return false;
            }

            // At this point we are in the second phase; we know that all the input types are fixed.

            TypeArray pDelegateParameters = GetFixedDelegateParameters(pDelegateType);
            if (pDelegateParameters == null)
            {
                return false;
            }

            ArgInfos argInfo = new ArgInfos() { carg = pDelegateParameters.size, types = pDelegateParameters, fHasExprs = false, prgexpr = null };

            var argsBinder = new ExpressionBinder.GroupToArgsBinder(_binder, 0/* flags */, pSource.asMEMGRP(), argInfo, null, false, pDelegateType);

            bool success = argsBinder.Bind(false);
            if (!success)
            {
                return false;
            }

            MethPropWithInst mwi = argsBinder.GetResultsOfBind().GetBestResult();
            CType pMethodReturnType = GetTypeManager().SubstType(mwi.Meth().RetType,
                mwi.GetType(), mwi.TypeArgs);
            if (pMethodReturnType.IsVoidType())
            {
                return false;
            }

            LowerBoundInference(pMethodReturnType, pDelegateReturnType);
            return true;
        }
Ejemplo n.º 31
0
        private static Type CalculateAssociatedSystemType(CType src)
        {
            Type result = null;

            switch (src.GetTypeKind())
            {
                case TypeKind.TK_ArrayType:
                    ArrayType a = src.AsArrayType();
                    Type elementType = a.GetElementType().AssociatedSystemType;
                    if (a.rank == 1)
                    {
                        result = elementType.MakeArrayType();
                    }
                    else
                    {
                        result = elementType.MakeArrayType(a.rank);
                    }
                    break;

                case TypeKind.TK_NullableType:
                    NullableType n = src.AsNullableType();
                    Type underlyingType = n.GetUnderlyingType().AssociatedSystemType;
                    result = typeof(Nullable<>).MakeGenericType(underlyingType);
                    break;

                case TypeKind.TK_PointerType:
                    PointerType p = src.AsPointerType();
                    Type referentType = p.GetReferentType().AssociatedSystemType;
                    result = referentType.MakePointerType();
                    break;

                case TypeKind.TK_ParameterModifierType:
                    ParameterModifierType r = src.AsParameterModifierType();
                    Type parameterType = r.GetParameterType().AssociatedSystemType;
                    result = parameterType.MakeByRefType();
                    break;

                case TypeKind.TK_AggregateType:
                    result = CalculateAssociatedSystemTypeForAggregate(src.AsAggregateType());
                    break;

                case TypeKind.TK_TypeParameterType:
                    TypeParameterType t = src.AsTypeParameterType();
                    if (t.IsMethodTypeParameter())
                    {
                        MethodInfo meth = t.GetOwningSymbol().AsMethodSymbol().AssociatedMemberInfo as MethodInfo;
                        result = meth.GetGenericArguments()[t.GetIndexInOwnParameters()];
                    }
                    else
                    {
                        Type parentType = t.GetOwningSymbol().AsAggregateSymbol().AssociatedSystemType;
                        result = parentType.GetTypeInfo().GenericTypeParameters[t.GetIndexInOwnParameters()];
                    }
                    break;

                case TypeKind.TK_ArgumentListType:
                case TypeKind.TK_BoundLambdaType:
                case TypeKind.TK_ErrorType:
                case TypeKind.TK_MethodGroupType:
                case TypeKind.TK_NaturalIntegerType:
                case TypeKind.TK_NullType:
                case TypeKind.TK_OpenTypePlaceholderType:
                case TypeKind.TK_UnboundLambdaType:
                case TypeKind.TK_VoidType:

                default:
                    break;
            }

            Debug.Assert(result != null || src.GetTypeKind() == TypeKind.TK_AggregateType);
            return result;
        }
Ejemplo n.º 32
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool LowerBoundArrayInference(CType pSource, CType pDest)
        {
            // SPEC:  Otherwise, if U is an array CType Ue[...] and V is either an array
            // SPEC:   CType Ve[...] of the same rank, or if U is a one-dimensional array
            // SPEC:   CType Ue[] and V is one of IEnumerable<Ve>, ICollection<Ve>, 
            // SPEC:   IList<Ve>, IReadOnlyCollection<Ve> or IReadOnlyList<Ve> then
            // SPEC:    if Ue is known to be a reference CType then a lower-bound inference
            // SPEC:     from Ue to Ve is made.
            // SPEC:    otherwise an exact inference from Ue to Ve is made.

            // Consider the following:
            //
            // abstract class B<T> { public abstract M<U>(U u) : where U : T; }
            // class D : B<int[]> {
            //   static void M<X>(X[] x) { }
            //   public override M<U>(U u) { M(u); } // should infer M<int>
            // }

            if (pSource.IsTypeParameterType())
            {
                pSource = pSource.AsTypeParameterType().GetEffectiveBaseClass();
            }

            if (!pSource.IsArrayType())
            {
                return false;
            }
            ArrayType pArraySource = pSource.AsArrayType();
            CType pElementSource = pArraySource.GetElementType();
            CType pElementDest = null;

            if (pDest.IsArrayType())
            {
                ArrayType pArrayDest = pDest.AsArrayType();
                if (pArrayDest.rank != pArraySource.rank)
                {
                    return false;
                }
                pElementDest = pArrayDest.GetElementType();
            }
            else if (pDest.isPredefType(PredefinedType.PT_G_IENUMERABLE) ||
                pDest.isPredefType(PredefinedType.PT_G_ICOLLECTION) ||
                pDest.isPredefType(PredefinedType.PT_G_ILIST) ||
                pDest.isPredefType(PredefinedType.PT_G_IREADONLYCOLLECTION) ||
                pDest.isPredefType(PredefinedType.PT_G_IREADONLYLIST))
            {
                if (pArraySource.rank != 1)
                {
                    return false;
                }
                AggregateType pAggregateDest = pDest.AsAggregateType();
                pElementDest = pAggregateDest.GetTypeArgsThis().Item(0);
            }
            else
            {
                return false;
            }

            if (pElementSource.IsRefType())
            {
                LowerBoundInference(pElementSource, pElementDest);
            }
            else
            {
                ExactInference(pElementSource, pElementDest);
            }
            return true;
        }
Ejemplo n.º 33
0
        private static bool CheckSingleConstraint(CSemanticChecker checker, ErrorHandling errHandling, Symbol symErr, TypeParameterType var, CType arg, TypeArray typeArgsCls, TypeArray typeArgsMeth, CheckConstraintsFlags flags)
        {
            bool fReportErrors = 0 == (flags & CheckConstraintsFlags.NoErrors);

            if (arg.IsOpenTypePlaceholderType())
            {
                return true;
            }

            if (arg.IsErrorType())
            {
                // Error should have been reported previously.
                return false;
            }

            if (checker.CheckBogus(arg))
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_BogusType, arg);
                }

                return false;
            }

            if (arg.IsPointerType() || arg.isSpecialByRefType())
            {
                if (fReportErrors)
                {
                    errHandling.Error(ErrorCode.ERR_BadTypeArgument, arg);
                }

                return false;
            }

            if (arg.isStaticClass())
            {
                if (fReportErrors)
                {
                    checker.ReportStaticClassError(null, arg, ErrorCode.ERR_GenericArgIsStaticClass);
                }

                return false;
            }

            bool fError = false;
            if (var.HasRefConstraint() && !arg.IsRefType())
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_RefConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                }

                fError = true;
            }

            TypeArray bnds = checker.GetSymbolLoader().GetTypeManager().SubstTypeArray(var.GetBounds(), typeArgsCls, typeArgsMeth);
            int itypeMin = 0;

            if (var.HasValConstraint())
            {
                // If we have a type variable that is constrained to a value type, then we
                // want to check if its a nullable type, so that we can report the 
                // constraint error below. In order to do this however, we need to check 
                // that either the type arg is not a value type, or it is a nullable type.
                //
                // To check whether or not its a nullable type, we need to get the resolved
                // bound from the type argument and check against that.

                bool bIsValueType = arg.IsValType();
                bool bIsNullable = arg.IsNullableType();
                if (bIsValueType && arg.IsTypeParameterType())
                {
                    TypeArray pArgBnds = arg.AsTypeParameterType().GetBounds();
                    if (pArgBnds.size > 0)
                    {
                        bIsNullable = pArgBnds.Item(0).IsNullableType();
                    }
                }

                if (!bIsValueType || bIsNullable)
                {
                    if (fReportErrors)
                    {
                        errHandling.ErrorRef(ErrorCode.ERR_ValConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                    }

                    fError = true;
                }

                // Since FValCon() is set it is redundant to check System.ValueType as well.
                if (bnds.size != 0 && bnds.Item(0).isPredefType(PredefinedType.PT_VALUE))
                {
                    itypeMin = 1;
                }
            }

            for (int j = itypeMin; j < bnds.size; j++)
            {
                CType typeBnd = bnds.Item(j);
                if (!SatisfiesBound(checker, arg, typeBnd))
                {
                    if (fReportErrors)
                    {
                        // The bound isn't satisfied because of a constaint type. Explain to the user why not.
                        // There are 4 main cases, based on the type of the supplied type argument:
                        //  - reference type, or type parameter known to be a reference type
                        //  - nullable type, from which there is a boxing conversion to the constraint type(see below for details)
                        //  - type varaiable
                        //  - value type
                        // These cases are broken out because: a) The sets of conversions which can be used 
                        // for constraint satisfaction is different based on the type argument supplied, 
                        // and b) Nullable is one funky type, and user's can use all the help they can get
                        // when using it.
                        ErrorCode error;
                        if (arg.IsRefType())
                        {
                            // A reference type can only satisfy bounds to types 
                            // to which they have an implicit reference conversion
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedRefType;
                        }
                        else if (arg.IsNullableType() && checker.GetSymbolLoader().HasBaseConversion(arg.AsNullableType().GetUnderlyingType(), typeBnd))    // This is inlining FBoxingConv
                        {
                            // nullable types do not satisfy bounds to every type that they are boxable to
                            // They only satisfy bounds of object and ValueType
                            if (typeBnd.isPredefType(PredefinedType.PT_ENUM) || arg.AsNullableType().GetUnderlyingType() == typeBnd)
                            {
                                // Nullable types don't satisfy bounds of EnumType, or the underlying type of the enum
                                // even though the conversion from Nullable to these types is a boxing conversion
                                // This is a rare case, because these bounds can never be directly stated ...
                                // These bounds can only occur when one type paramter is constrained to a second type parameter
                                // and the second type parameter is instantiated with Enum or the underlying type of the first type
                                // parameter
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableEnum;
                            }
                            else
                            {
                                // Nullable types don't satisfy the bounds of any interface type
                                // even when there is a boxing conversion from the Nullable type to 
                                // the interface type. This will be a relatively common scenario
                                // so we cal it out separately from the previous case.
                                Debug.Assert(typeBnd.isInterfaceType());
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableInterface;
                            }
                        }
                        else if (arg.IsTypeParameterType())
                        {
                            // Type variables can satisfy bounds through boxing and type variable conversions
                            Debug.Assert(!arg.IsRefType());
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedTyVar;
                        }
                        else
                        {
                            // Value types can only satisfy bounds through boxing conversions.
                            // Note that the exceptional case of Nullable types and boxing is handled above.
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedValType;
                        }
                        errHandling.Error(error, new ErrArgRef(symErr), new ErrArg(typeBnd, ErrArgFlags.Unique), var, new ErrArgRef(arg, ErrArgFlags.Unique));
                    }
                    fError = true;
                }
            }

            // Check the newable constraint.
            if (!var.HasNewConstraint() || arg.IsValType())
            {
                return !fError;
            }

            if (arg.isClassType())
            {
                AggregateSymbol agg = arg.AsAggregateType().getAggregate();

                // Due to late binding nature of IDE created symbols, the AggregateSymbol might not
                // have all the information necessary yet, if it is not fully bound.
                // by calling LookupAggMember, it will ensure that we will update all the
                // information necessary at least for the given method.
                checker.GetSymbolLoader().LookupAggMember(checker.GetNameManager().GetPredefName(PredefinedName.PN_CTOR), agg, symbmask_t.MASK_ALL);

                if (agg.HasPubNoArgCtor() && !agg.IsAbstract())
                {
                    return !fError;
                }
            }
            else if (arg.IsTypeParameterType() && arg.AsTypeParameterType().HasNewConstraint())
            {
                return !fError;
            }

            if (fReportErrors)
            {
                errHandling.ErrorRef(ErrorCode.ERR_NewConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
            }

            return false;
        }
Ejemplo n.º 34
0
        // Check the constraints of any type arguments in the given Type.
        public static bool CheckConstraints(CSemanticChecker checker, ErrorHandling errHandling, CType type, CheckConstraintsFlags flags)
        {
            type = type.GetNakedType(false);

            if (type.IsNullableType())
            {
                CType typeT = type.AsNullableType().GetAts(checker.GetErrorContext());
                if (typeT != null)
                    type = typeT;
                else
                    type = type.GetNakedType(true);
            }

            if (!type.IsAggregateType())
                return true;

            AggregateType ats = type.AsAggregateType();

            if (ats.GetTypeArgsAll().size == 0)
            {
                // Common case: there are no type vars, so there are no constraints.
                ats.fConstraintsChecked = true;
                ats.fConstraintError = false;
                return true;
            }

            if (ats.fConstraintsChecked)
            {
                // Already checked.
                if (!ats.fConstraintError || (flags & CheckConstraintsFlags.NoDupErrors) != 0)
                {
                    // No errors or no need to report errors again.
                    return !ats.fConstraintError;
                }
            }

            TypeArray typeVars = ats.getAggregate().GetTypeVars();
            TypeArray typeArgsThis = ats.GetTypeArgsThis();
            TypeArray typeArgsAll = ats.GetTypeArgsAll();

            Debug.Assert(typeVars.size == typeArgsThis.size);

            if (!ats.fConstraintsChecked)
            {
                ats.fConstraintsChecked = true;
                ats.fConstraintError = false;
            }

            // Check the outer type first. If CheckConstraintsFlags.Outer is not specified and the
            // outer type has already been checked then don't bother checking it.
            if (ats.outerType != null && ((flags & CheckConstraintsFlags.Outer) != 0 || !ats.outerType.fConstraintsChecked))
            {
                CheckConstraints(checker, errHandling, ats.outerType, flags);
                ats.fConstraintError |= ats.outerType.fConstraintError;
            }

            if (typeVars.size > 0)
                ats.fConstraintError |= !CheckConstraintsCore(checker, errHandling, ats.getAggregate(), typeVars, typeArgsThis, typeArgsAll, null, (flags & CheckConstraintsFlags.NoErrors));

            // Now check type args themselves.
            for (int i = 0; i < typeArgsThis.size; i++)
            {
                CType arg = typeArgsThis.Item(i).GetNakedType(true);
                if (arg.IsAggregateType() && !arg.AsAggregateType().fConstraintsChecked)
                {
                    CheckConstraints(checker, errHandling, arg.AsAggregateType(), flags | CheckConstraintsFlags.Outer);
                    if (arg.AsAggregateType().fConstraintError)
                        ats.fConstraintError = true;
                }
            }
            return !ats.fConstraintError;
        }
Ejemplo n.º 35
0
            /*
             * BindImplicitConversion
             *
             * This is a complex routine with complex parameters. Generally, this should
             * be called through one of the helper methods that insulates you
             * from the complexity of the interface. This routine handles all the logic
             * associated with implicit conversions.
             *
             * exprSrc - the expression being converted. Can be null if only type conversion
             *           info is being supplied.
             * typeSrc - type of the source
             * typeDest - type of the destination
             * exprDest - returns an expression of the src converted to the dest. If null, we
             *            only care about whether the conversion can be attempted, not the
             *            expression tree.
             * flags    - flags possibly customizing the conversions allowed. E.g., can suppress
             *            user-defined conversions.
             *
             * returns true if the conversion can be made, false if not.
             */
            public bool Bind()
            {
                // 13.1 Implicit conversions
                //
                // The following conversions are classified as implicit conversions:
                //
                // *   Identity conversions
                // *   Implicit numeric conversions
                // *   Implicit enumeration conversions
                // *   Implicit reference conversions
                // *   Boxing conversions
                // *   Implicit type parameter conversions
                // *   Implicit constant expression conversions
                // *   User-defined implicit conversions
                // *   Implicit conversions from an anonymous method expression to a compatible delegate type
                // *   Implicit conversion from a method group to a compatible delegate type
                // *   Conversions from the null type (11.2.7) to any nullable type
                // *   Implicit nullable conversions
                // *   Lifted user-defined implicit conversions
                //
                // Implicit conversions can occur in a variety of situations, including function member invocations
                // (14.4.3), cast expressions (14.6.6), and assignments (14.14).

                // Can't convert to or from the error type.
                if (typeSrc == null || typeDest == null || typeDest.IsNeverSameType())
                {
                    return(false);
                }

                Debug.Assert(typeSrc != null && typeDest != null);         // types must be supplied.
                Debug.Assert(exprSrc == null || typeSrc == exprSrc.type);  // type of source should be correct if source supplied
                Debug.Assert(!needsExprDest || exprSrc != null);           // need source expr to create dest expr

                switch (typeDest.GetTypeKind())
                {
                case TypeKind.TK_ErrorType:
                    Debug.Assert(typeDest.AsErrorType().HasTypeParent() || typeDest.AsErrorType().HasNSParent());
                    if (typeSrc != typeDest)
                    {
                        return(false);
                    }
                    if (needsExprDest)
                    {
                        exprDest = exprSrc;
                    }
                    return(true);

                case TypeKind.TK_NullType:
                    // Can only convert to the null type if src is null.
                    if (!typeSrc.IsNullType())
                    {
                        return(false);
                    }
                    if (needsExprDest)
                    {
                        exprDest = exprSrc;
                    }
                    return(true);

                case TypeKind.TK_MethodGroupType:
                    VSFAIL("Something is wrong with Type.IsNeverSameType()");
                    return(false);

                case TypeKind.TK_NaturalIntegerType:
                case TypeKind.TK_ArgumentListType:
                    return(typeSrc == typeDest);

                case TypeKind.TK_VoidType:
                    return(false);

                default:
                    break;
                }

                if (typeSrc.IsErrorType())
                {
                    Debug.Assert(!typeDest.IsErrorType());
                    return(false);
                }

                // 13.1.1 Identity conversion
                //
                // An identity conversion converts from any type to the same type. This conversion exists only
                // such that an entity that already has a required type can be said to be convertible to that type.

                if (typeSrc == typeDest &&
                    ((flags & CONVERTTYPE.ISEXPLICIT) == 0 || (!typeSrc.isPredefType(PredefinedType.PT_FLOAT) && !typeSrc.isPredefType(PredefinedType.PT_DOUBLE))))
                {
                    if (needsExprDest)
                    {
                        exprDest = exprSrc;
                    }
                    return(true);
                }

                if (typeDest.IsNullableType())
                {
                    return(BindNubConversion(typeDest.AsNullableType()));
                }

                if (typeSrc.IsNullableType())
                {
                    return(bindImplicitConversionFromNullable(typeSrc.AsNullableType()));
                }

                if ((flags & CONVERTTYPE.ISEXPLICIT) != 0)
                {
                    flags |= CONVERTTYPE.NOUDC;
                }

                // Get the fundamental types of destination.
                FUNDTYPE ftDest = typeDest.fundType();

                Debug.Assert(ftDest != FUNDTYPE.FT_NONE || typeDest.IsParameterModifierType());

                switch (typeSrc.GetTypeKind())
                {
                default:
                    VSFAIL("Bad type symbol kind");
                    break;

                case TypeKind.TK_MethodGroupType:
                    if (exprSrc.isMEMGRP())
                    {
                        EXPRCALL outExpr;
                        bool     retVal = binder.BindGrpConversion(exprSrc.asMEMGRP(), typeDest, needsExprDest, out outExpr, false);
                        exprDest = outExpr;
                        return(retVal);
                    }
                    return(false);

                case TypeKind.TK_VoidType:
                case TypeKind.TK_ErrorType:
                case TypeKind.TK_ParameterModifierType:
                case TypeKind.TK_ArgumentListType:
                    return(false);

                case TypeKind.TK_NullType:
                    if (bindImplicitConversionFromNull())
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_ArrayType:
                    if (bindImplicitConversionFromArray())
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_PointerType:
                    if (bindImplicitConversionFromPointer())
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_TypeParameterType:
                    if (bindImplicitConversionFromTypeVar(typeSrc.AsTypeParameterType()))
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;

                case TypeKind.TK_AggregateType:
                    // TypeReference and ArgIterator can't be boxed (or converted to anything else)
                    if (typeSrc.isSpecialByRefType())
                    {
                        return(false);
                    }
                    if (bindImplicitConversionFromAgg(typeSrc.AsAggregateType()))
                    {
                        return(true);
                    }
                    // If not, try user defined implicit conversions.
                    break;
                }

                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                // RUNTIME BINDER ONLY CHANGE
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                //
                // Every incoming dynamic operand should be implicitly convertible
                // to any type that it is an instance of.

                if (exprSrc != null &&
                    exprSrc.RuntimeObject != null &&
                    typeDest.AssociatedSystemType.IsInstanceOfType(exprSrc.RuntimeObject) &&
                    binder.GetSemanticChecker().CheckTypeAccess(typeDest, binder.Context.ContextForMemberLookup()))
                {
                    if (needsExprDest)
                    {
                        binder.bindSimpleCast(exprSrc, exprTypeDest, out exprDest, exprSrc.flags & EXPRFLAG.EXF_CANTBENULL);
                    }
                    return(true);
                }

                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                // END RUNTIME BINDER ONLY CHANGE
                // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                // 13.1.8 User-defined implicit conversions
                //
                // A user-defined implicit conversion consists of an optional standard implicit conversion,
                // followed by execution of a user-defined implicit conversion operator, followed by another
                // optional standard implicit conversion. The exact rules for evaluating user-defined
                // conversions are described in 13.4.3.

                if (0 == (flags & CONVERTTYPE.NOUDC))
                {
                    return(binder.bindUserDefinedConversion(exprSrc, typeSrc, typeDest, needsExprDest, out exprDest, true));
                }

                // No conversion was found.

                return(false);
            }
Ejemplo n.º 36
0
            private bool DoesTypeArgumentsContainErrorSym(CType var)
            {
                if (!var.IsAggregateType())
                {
                    return false;
                }

                TypeArray typeVars = var.AsAggregateType().GetTypeArgsAll();
                for (int i = 0; i < typeVars.size; i++)
                {
                    CType type = typeVars.Item(i);
                    if (type.IsErrorType())
                    {
                        return true;
                    }
                    else if (type.IsAggregateType())
                    {
                        // If we have an agg type sym, check if its type args have errors.
                        if (DoesTypeArgumentsContainErrorSym(type))
                        {
                            return true;
                        }
                    }
                }
                return false;
            }
Ejemplo n.º 37
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool ExactConstructedInference(CType pSource, CType pDest)
        {
            // SPEC:  Otherwise, if V is a constructed CType C<V1...Vk> and U is a constructed
            // SPEC:   CType C<U1...Uk> then an exact inference 
            // SPEC:   is made from each Ui to the corresponding Vi.

            if (!pSource.IsAggregateType() || !pDest.IsAggregateType())
            {
                return false;
            }
            AggregateType pConstructedSource = pSource.AsAggregateType();
            AggregateType pConstructedDest = pDest.AsAggregateType();
            if (pConstructedSource.GetOwningAggregate() != pConstructedDest.GetOwningAggregate())
            {
                return false;
            }
            ExactTypeArgumentInference(pConstructedSource, pConstructedDest);
            return true;
        }
Ejemplo n.º 38
0
            /////////////////////////////////////////////////////////////////////////////////

            public static MethodOrPropertySymbol FindMostDerivedMethod(
                    SymbolLoader symbolLoader,
                    MethodOrPropertySymbol pMethProp,
                    CType pType)
            {
                MethodSymbol method;
                bool bIsIndexer = false;

                if (pMethProp.IsMethodSymbol())
                {
                    method = pMethProp.AsMethodSymbol();
                }
                else
                {
                    PropertySymbol prop = pMethProp.AsPropertySymbol();
                    method = prop.methGet != null ? prop.methGet : prop.methSet;
                    if (method == null)
                    {
                        return null;
                    }
                    bIsIndexer = prop.isIndexer();
                }

                if (!method.isVirtual)
                {
                    return method;
                }

                if (pType == null)
                {
                    // This must be a static call.
                    return method;
                }

                // Now get the slot method.
                if (method.swtSlot != null && method.swtSlot.Meth() != null)
                {
                    method = method.swtSlot.Meth();
                }

                if (!pType.IsAggregateType())
                {
                    // Not something that can have overrides anyway.
                    return method;
                }

                for (AggregateSymbol pAggregate = pType.AsAggregateType().GetOwningAggregate();
                        pAggregate != null && pAggregate.GetBaseAgg() != null;
                        pAggregate = pAggregate.GetBaseAgg())
                {
                    for (MethodOrPropertySymbol meth = symbolLoader.LookupAggMember(method.name, pAggregate, symbmask_t.MASK_MethodSymbol | symbmask_t.MASK_PropertySymbol).AsMethodOrPropertySymbol();
                            meth != null;
                            meth = symbolLoader.LookupNextSym(meth, pAggregate, symbmask_t.MASK_MethodSymbol | symbmask_t.MASK_PropertySymbol).AsMethodOrPropertySymbol())
                    {
                        if (!meth.isOverride)
                        {
                            continue;
                        }
                        if (meth.swtSlot.Sym != null && meth.swtSlot.Sym == method)
                        {
                            if (bIsIndexer)
                            {
                                Debug.Assert(meth.IsMethodSymbol());
                                return meth.AsMethodSymbol().getProperty();
                            }
                            else
                            {
                                return meth;
                            }
                        }
                    }
                }

                // If we get here, it means we can have two cases: one is that we have 
                // a delegate. This is because the delegate invoke method is virtual and is 
                // an override, but we wont have the slots set up correctly, and will 
                // not find the base type in the inheritance hierarchy. The second is that
                // we're calling off of the base itself.
                Debug.Assert(method.parent.IsAggregateSymbol());
                return method;
            }
Ejemplo n.º 39
0
        ////////////////////////////////////////////////////////////////////////////////

        /*
        bool LowerBoundNullableInference(CType pSource, CType pDest)
        {
            // SPEC ISSUE: As noted above, the spec does not clearly call out how
            // SPEC ISSUE: to do CType inference to a nullable target. I propose the
            // SPEC ISSUE: following:
            // SPEC ISSUE:
            // SPEC ISSUE:  Otherwise, if V is nullable CType V1? and U is a 
            // SPEC ISSUE:   non-nullable struct CType then an exact inference is made from U to V1.

            if (!pDest.IsNullableType() || !pSource.isStructType() || pSource.IsNullableType())
            {
                return false;
            }
            ExactInference(pSource, pDest.AsNullableType().GetUnderlyingType());
            return true;
        }
         * */

        ////////////////////////////////////////////////////////////////////////////////

        private bool LowerBoundConstructedInference(CType pSource, CType pDest)
        {
            if (!pDest.IsAggregateType())
            {
                return false;
            }

            AggregateType pConstructedDest = pDest.AsAggregateType();
            TypeArray pDestArgs = pConstructedDest.GetTypeArgsAll();
            if (pDestArgs.size == 0)
            {
                return false;
            }

            // SPEC:  Otherwise, if V is a constructed class or struct CType C<V1...Vk> 
            // SPEC:   and U is C<U1...Uk> then an exact inference
            // SPEC:   is made from each Ui to the corresponding Vi.

            // SPEC:  Otherwise, if V is a constructed interface or delegate CType C<V1...Vk> 
            // SPEC:   and U is C<U1...Uk> then an exact inference,
            // SPEC:   lower bound inference or upper bound inference
            // SPEC:   is made from each Ui to the corresponding Vi.

            if (pSource.IsAggregateType() &&
                pSource.AsAggregateType().GetOwningAggregate() == pConstructedDest.GetOwningAggregate())
            {
                if (pSource.isInterfaceType() || pSource.isDelegateType())
                {
                    LowerBoundTypeArgumentInference(pSource.AsAggregateType(), pConstructedDest);
                }
                else
                {
                    ExactTypeArgumentInference(pSource.AsAggregateType(), pConstructedDest);
                }
                return true;
            }

            // SPEC:  Otherwise, if V is a class CType C<V1...Vk> and U is a class CType which
            // SPEC:   inherits directly or indirectly from C<U1...Uk> then an exact ...
            // SPEC:  ... and U is a CType parameter with effective base class ...
            // SPEC:  ... and U is a CType parameter with an effective base class which inherits ...

            if (LowerBoundClassInference(pSource, pConstructedDest))
            {
                return true;
            }

            // SPEC:  Otherwise, if V is an interface CType C<V1...Vk> and U is a class CType
            // SPEC:   or struct CType and there is a unique set U1...Uk such that U directly 
            // SPEC:   or indirectly implements C<U1...Uk> then an exact ...
            // SPEC:  ... and U is an interface CType ...
            // SPEC:  ... and U is a CType parameter ...

            if (LowerBoundInterfaceInference(pSource, pConstructedDest))
            {
                return true;
            }

            return false;
        }
Ejemplo n.º 40
0
        /***************************************************************************************************

         There exists an explicit conversion ...
         * From a generic delegate type S to generic delegate type T, provided all of the follow are true:
            o Both types are constructed generic types of the same generic delegate type, D<X1,... Xk>.That is,
              S is D<S1,... Sk> and T is D<T1,... Tk>.
            o S is not compatible with or identical to T.
            o If type parameter Xi is declared to be invariant then Si must be identical to Ti.
            o If type parameter Xi is declared to be covariant ("out") then Si must be convertible 
              to Ti via an identify conversion,  implicit reference conversion, or explicit reference conversion.
            o If type parameter Xi is declared to be contravariant ("in") then either Si must be identical to Ti, 
              or Si and Ti must both be reference types.
        ***************************************************************************************************/
        public static bool HasGenericDelegateExplicitReferenceConversion(SymbolLoader loader, CType pSource, CType pTarget)
        {
            if (!pSource.isDelegateType() ||
                !pTarget.isDelegateType() ||
                pSource.getAggregate() != pTarget.getAggregate() ||
                loader.HasIdentityOrImplicitReferenceConversion(pSource, pTarget))
            {
                return false;
            }

            TypeArray pTypeParams = pSource.getAggregate().GetTypeVarsAll();
            TypeArray pSourceArgs = pSource.AsAggregateType().GetTypeArgsAll();
            TypeArray pTargetArgs = pTarget.AsAggregateType().GetTypeArgsAll();

            Debug.Assert(pTypeParams.size == pSourceArgs.size);
            Debug.Assert(pTypeParams.size == pTargetArgs.size);

            for (int iParam = 0; iParam < pTypeParams.size; ++iParam)
            {
                CType pSourceArg = pSourceArgs.Item(iParam);
                CType pTargetArg = pTargetArgs.Item(iParam);

                // If they're identical then this one is automatically good, so skip it.
                // If we have an error type, then we're in some fault tolerance. Let it through.
                if (pSourceArg == pTargetArg || pTargetArg.IsErrorType() || pSourceArg.IsErrorType())
                {
                    continue;
                }
                TypeParameterType pParam = pTypeParams.Item(iParam).AsTypeParameterType();
                if (pParam.Invariant)
                {
                    return false;
                }

                if (pParam.Covariant)
                {
                    if (!FExpRefConv(loader, pSourceArg, pTargetArg))
                    {
                        return false;
                    }
                }
                else if (pParam.Contravariant)
                {
                    if (!pSourceArg.IsRefType() || !pTargetArg.IsRefType())
                    {
                        return false;
                    }
                }
            }
            return true;
        }
Ejemplo n.º 41
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool UpperBoundArrayInference(CType pSource, CType pDest)
        {
            // SPEC:  Otherwise, if V is an array CType Ve[...] and U is an array
            // SPEC:   CType Ue[...] of the same rank, or if V is a one-dimensional array
            // SPEC:   CType Ve[] and U is one of IEnumerable<Ue>, ICollection<Ue>,
            // SPEC:   IList<Ue>, IReadOnlyCollection<Ue> or IReadOnlyList<Ue> then
            // SPEC:    if Ue is known to be a reference CType then an upper-bound inference
            // SPEC:     from Ue to Ve is made.
            // SPEC:    otherwise an exact inference from Ue to Ve is made.

            if (!pDest.IsArrayType())
            {
                return false;
            }
            ArrayType pArrayDest = pDest.AsArrayType();
            CType pElementDest = pArrayDest.GetElementType();
            CType pElementSource = null;

            if (pSource.IsArrayType())
            {
                ArrayType pArraySource = pSource.AsArrayType();
                if (pArrayDest.rank != pArraySource.rank)
                {
                    return false;
                }
                pElementSource = pArraySource.GetElementType();
            }
            else if (pSource.isPredefType(PredefinedType.PT_G_IENUMERABLE) ||
                pSource.isPredefType(PredefinedType.PT_G_ICOLLECTION) ||
                pSource.isPredefType(PredefinedType.PT_G_ILIST) ||
                pSource.isPredefType(PredefinedType.PT_G_IREADONLYLIST) ||
                pSource.isPredefType(PredefinedType.PT_G_IREADONLYCOLLECTION))
            {
                if (pArrayDest.rank != 1)
                {
                    return false;
                }
                AggregateType pAggregateSource = pSource.AsAggregateType();
                pElementSource = pAggregateSource.GetTypeArgsThis().Item(0);
            }
            else
            {
                return false;
            }

            if (pElementSource.IsRefType())
            {
                UpperBoundInference(pElementSource, pElementDest);
            }
            else
            {
                ExactInference(pElementSource, pElementDest);
            }
            return true;
        }
Ejemplo n.º 42
0
        /***************************************************************************************************
            Determine whether there is an explicit or implicit reference conversion (or identity conversion)
            from typeSrc to typeDst. This is when:
         
         13.2.3 Explicit reference conversions
        
        The explicit reference conversions are:
        *   From object to any reference-type.
        *   From any class-type S to any class-type T, provided S is a base class of T.
        *   From any class-type S to any interface-type T, provided S is not sealed and provided S does not implement T.
        *   From any interface-type S to any class-type T, provided T is not sealed or provided T implements S.
        *   From any interface-type S to any interface-type T, provided S is not derived from T.
        *   From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the following are true:
            o   S and T differ only in element type. (In other words, S and T have the same number of dimensions.)
            o   An explicit reference conversion exists from SE to TE.
        *   From System.Array and the interfaces it implements, to any array-type.
        *   From System.Delegate and the interfaces it implements, to any delegate-type.
        *   From a one-dimensional array-type S[] to System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> and their base interfaces, provided there is an explicit reference conversion from S to T.
        *   From a generic delegate type S to generic delegate type  T, provided all of the follow are true:
            o Both types are constructed generic types of the same generic delegate type, D<X1,... Xk>.That is, 
              S is D<S1,... Sk> and T is D<T1,... Tk>.
            o S is not compatible with or identical to T.
            o If type parameter Xi is declared to be invariant then Si must be identical to Ti.
            o If type parameter Xi is declared to be covariant ("out") then Si must be convertible 
              to Ti via an identify conversion,  implicit reference conversion, or explicit reference conversion.
            o If type parameter Xi is declared to be contravariant ("in") then either Si must be identical to Ti, 
               or Si and Ti must both be reference types.
        *   From System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> and their base interfaces to a one-dimensional array-type S[], provided there is an implicit or explicit reference conversion from S[] to System.Collections.Generic.IList<T> or System.Collections.Generic.IReadOnlyList<T>. This is precisely when either S and T are the same type or there is an implicit or explicit reference conversion from S to T.
        
        For a type-parameter T that is known to be a reference type (§25.7), the following explicit reference conversions exist:
        *   From the effective base class C of T to T and from any base class of C to T.
        *   From any interface-type to T.
        *   From T to any interface-type I provided there isn’t already an implicit reference conversion from T to I.
        *   From a type-parameter U to T provided that T depends on U (§25.7). [Note: Since T is known to be a reference type, within the scope of T, the run-time type of U will always be a reference type, even if U is not known to be a reference type at compile-time. end note]
        
            * Both src and dst are reference types and there is a builtin explicit conversion from
              src to dst.
            * Or src is a reference type and dst is a base type of src (in which case the conversion is
              implicit as well).
            * Or dst is a reference type and src is a base type of dst.
         
            The latter two cases can happen with type variables even though the other type variable is not
            a reference type.
        ***************************************************************************************************/
        public static bool FExpRefConv(SymbolLoader loader, CType typeSrc, CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeDst != null);
            if (typeSrc.IsRefType() && typeDst.IsRefType())
            {
                // is there an implicit reference conversion in either direction?
                // this handles the bulk of the cases ...
                if (loader.HasIdentityOrImplicitReferenceConversion(typeSrc, typeDst) ||
                    loader.HasIdentityOrImplicitReferenceConversion(typeDst, typeSrc))
                {
                    return true;
                }

                // For a type-parameter T that is known to be a reference type (§25.7), the following explicit reference conversions exist:
                // •    From any interface-type to T.
                // •    From T to any interface-type I provided there isn’t already an implicit reference conversion from T to I.
                if (typeSrc.isInterfaceType() && typeDst.IsTypeParameterType())
                {
                    return true;
                }
                if (typeSrc.IsTypeParameterType() && typeDst.isInterfaceType())
                {
                    return true;
                }

                // * From any class-type S to any interface-type T, provided S is not sealed
                // * From any interface-type S to any class-type T, provided T is not sealed
                // * From any interface-type S to any interface-type T, provided S is not derived from T.
                if (typeSrc.IsAggregateType() && typeDst.IsAggregateType())
                {
                    AggregateSymbol aggSrc = typeSrc.AsAggregateType().getAggregate();
                    AggregateSymbol aggDest = typeDst.AsAggregateType().getAggregate();

                    if ((aggSrc.IsClass() && !aggSrc.IsSealed() && aggDest.IsInterface()) ||
                        (aggSrc.IsInterface() && aggDest.IsClass() && !aggDest.IsSealed()) ||
                        (aggSrc.IsInterface() && aggDest.IsInterface()))
                    {
                        return true;
                    }
                }

                // *    From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the following are true:
                //     o    S and T differ only in element type. (In other words, S and T have the same number of dimensions.)
                //     o    An explicit reference conversion exists from SE to TE.
                if (typeSrc.IsArrayType() && typeDst.IsArrayType())
                {
                    return typeSrc.AsArrayType().rank == typeDst.AsArrayType().rank && FExpRefConv(loader, typeSrc.AsArrayType().GetElementType(), typeDst.AsArrayType().GetElementType());
                }

                // *    From a one-dimensional array-type S[] to System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> 
                //      and their base interfaces, provided there is an explicit reference conversion from S to T.
                if (typeSrc.IsArrayType())
                {
                    if (typeSrc.AsArrayType().rank != 1 ||
                        !typeDst.isInterfaceType() || typeDst.AsAggregateType().GetTypeArgsAll().Size != 1)
                    {
                        return false;
                    }

                    AggregateSymbol aggIList = loader.GetOptPredefAgg(PredefinedType.PT_G_ILIST);
                    AggregateSymbol aggIReadOnlyList = loader.GetOptPredefAgg(PredefinedType.PT_G_IREADONLYLIST);

                    if ((aggIList == null ||
                        !loader.IsBaseAggregate(aggIList, typeDst.AsAggregateType().getAggregate())) &&
                        (aggIReadOnlyList == null ||
                        !loader.IsBaseAggregate(aggIReadOnlyList, typeDst.AsAggregateType().getAggregate())))
                    {
                        return false;
                    }

                    return FExpRefConv(loader, typeSrc.AsArrayType().GetElementType(), typeDst.AsAggregateType().GetTypeArgsAll().Item(0));
                }

                if (typeDst.IsArrayType() && typeSrc.IsAggregateType())
                {
                    // * From System.Array and the interfaces it implements, to any array-type.
                    if (loader.HasIdentityOrImplicitReferenceConversion(loader.GetReqPredefType(PredefinedType.PT_ARRAY), typeSrc))
                    {
                        return true;
                    }

                    // *    From System.Collections.Generic.IList<T>, System.Collections.Generic.IReadOnlyList<T> and their base interfaces to a 
                    //      one-dimensional array-type S[], provided there is an implicit or explicit reference conversion from S[] to 
                    //      System.Collections.Generic.IList<T> or System.Collections.Generic.IReadOnlyList<T>. This is precisely when either S and T
                    //      are the same type or there is an implicit or explicit reference conversion from S to T.
                    ArrayType arrayDest = typeDst.AsArrayType();
                    AggregateType aggtypeSrc = typeSrc.AsAggregateType();
                    if (arrayDest.rank != 1 || !typeSrc.isInterfaceType() ||
                        aggtypeSrc.GetTypeArgsAll().Size != 1)
                    {
                        return false;
                    }

                    AggregateSymbol aggIList = loader.GetOptPredefAgg(PredefinedType.PT_G_ILIST);
                    AggregateSymbol aggIReadOnlyList = loader.GetOptPredefAgg(PredefinedType.PT_G_IREADONLYLIST);

                    if ((aggIList == null ||
                        !loader.IsBaseAggregate(aggIList, aggtypeSrc.getAggregate())) &&
                        (aggIReadOnlyList == null ||
                        !loader.IsBaseAggregate(aggIReadOnlyList, aggtypeSrc.getAggregate())))
                    {
                        return false;
                    }

                    CType typeArr = arrayDest.GetElementType();
                    CType typeLst = aggtypeSrc.GetTypeArgsAll().Item(0);

                    Debug.Assert(!typeArr.IsNeverSameType());
                    return typeArr == typeLst || FExpRefConv(loader, typeArr, typeLst);
                }
                if (HasGenericDelegateExplicitReferenceConversion(loader, typeSrc, typeDst))
                {
                    return true;
                }
            }
            else if (typeSrc.IsRefType())
            {
                // conversion of T . U, where T : class, U
                // .. these constraints implies where U : class
                return loader.HasIdentityOrImplicitReferenceConversion(typeSrc, typeDst);
            }
            else if (typeDst.IsRefType())
            {
                // conversion of T . U, where U : class, T 
                // .. these constraints implies where T : class
                return loader.HasIdentityOrImplicitReferenceConversion(typeDst, typeSrc);
            }
            return false;
        }
Ejemplo n.º 43
0
        ////////////////////////////////////////////////////////////////////////////////

        private bool UpperBoundClassInference(AggregateType pSource, CType pDest)
        {
            if (!pSource.isClassType() || !pDest.isClassType())
            {
                return false;
            }

            // SPEC:  Otherwise, if U is a class CType C<U1...Uk> and V is a class CType which
            // SPEC:   inherits directly or indirectly from C<V1...Vk> then an exact 
            // SPEC:   inference is made from each Ui to the corresponding Vi.

            AggregateType pDestBase = pDest.AsAggregateType().GetBaseClass();

            while (pDestBase != null)
            {
                if (pDestBase.GetOwningAggregate() == pSource.GetOwningAggregate())
                {
                    ExactTypeArgumentInference(pSource, pDestBase);
                    return true;
                }
                pDestBase = pDestBase.GetBaseClass();
            }
            return false;
        }
Ejemplo n.º 44
0
 public CType SubstType(CType typeSrc, CType typeCls, TypeArray typeArgsMeth)
 {
     return SubstType(typeSrc, typeCls.IsAggregateType() ? typeCls.AsAggregateType().GetTypeArgsAll() : null, typeArgsMeth);
 }
Ejemplo n.º 45
0
        ////////////////////////////////////////////////////////////////////////////////
        //
        // Input types
        //
        private bool DoesInputTypeContain(EXPR pSource, CType pDest,
            TypeParameterType pParam)
        {
            // SPEC: If E is a method group or an anonymous function and T is a delegate
            // SPEC: CType or expression tree CType then all the parameter types of T are
            // SPEC: input types of E with CType T.

            pDest = pDest.GetDelegateTypeOfPossibleExpression();
            if (!pDest.isDelegateType())
            {
                return false; // No input types.
            }

            if (!pSource.isUNBOUNDLAMBDA() && !pSource.isMEMGRP())
            {
                return false; // No input types.
            }

            TypeArray pDelegateParameters =
                pDest.AsAggregateType().GetDelegateParameters(GetSymbolLoader());
            if (pDelegateParameters == null)
            {
                return false;
            }
            return TypeManager.ParametersContainTyVar(pDelegateParameters, pParam);
        }
Ejemplo n.º 46
0
 public bool SubstEqualTypes(CType typeDst, CType typeSrc, CType typeCls, TypeArray typeArgsMeth)
 {
     return SubstEqualTypes(typeDst, typeSrc, typeCls.IsAggregateType() ? typeCls.AsAggregateType().GetTypeArgsAll() : null, typeArgsMeth, SubstTypeFlags.NormNone);
 }
Ejemplo n.º 47
0
        public virtual bool CheckTypeAccess(CType type, Symbol symWhere)
        {
            Debug.Assert(type != null);

            // Array, Ptr, Nub, etc don't matter.
            type = type.GetNakedType(true);

            if (!type.IsAggregateType())
            {
                Debug.Assert(type.IsVoidType() || type.IsErrorType() || type.IsTypeParameterType());
                return true;
            }

            for (AggregateType ats = type.AsAggregateType(); ats != null; ats = ats.outerType)
            {
                if (ACCESSERROR.ACCESSERROR_NOERROR != CheckAccessCore(ats.GetOwningAggregate(), ats.outerType, symWhere, null))
                {
                    return false;
                }
            }

            TypeArray typeArgs = type.AsAggregateType().GetTypeArgsAll();
            for (int i = 0; i < typeArgs.size; i++)
            {
                if (!CheckTypeAccess(typeArgs.Item(i), symWhere))
                    return false;
            }

            return true;
        }
Ejemplo n.º 48
0
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        // RUNTIME BINDER ONLY CHANGE
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

        internal bool GetBestAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, CType typeSrc, out CType typeDst)
        {
            // This method implements the "best accessible type" algorithm for determining the type
            // of untyped arguments in the runtime binder. It is also used in method type inference
            // to fix type arguments to types that are accessible.

            // The new type is returned in an out parameter. The result will be true (and the out param
            // non-null) only when the algorithm could find a suitable accessible type.

            Debug.Assert(semanticChecker != null);
            Debug.Assert(bindingContext != null);
            Debug.Assert(typeSrc != null);

            typeDst = null;

            if (semanticChecker.CheckTypeAccess(typeSrc, bindingContext.ContextForMemberLookup()))
            {
                // If we already have an accessible type, then use it. This is the terminal point of the recursion.
                typeDst = typeSrc;
                return true;
            }

            // These guys have no accessibility concerns.
            Debug.Assert(!typeSrc.IsVoidType() && !typeSrc.IsErrorType() && !typeSrc.IsTypeParameterType());

            if (typeSrc.IsParameterModifierType() || typeSrc.IsPointerType())
            {
                // We cannot vary these.
                return false;
            }

            CType intermediateType;
            if ((typeSrc.isInterfaceType() || typeSrc.isDelegateType()) && TryVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsAggregateType(), out intermediateType))
            {
                // If we have an interface or delegate type, then it can potentially be varied by its type arguments
                // to produce an accessible type, and if that's the case, then return that.
                // Example: IEnumerable<PrivateConcreteFoo> --> IEnumerable<PublicAbstractFoo>
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType() && TryArrayVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsArrayType(), out intermediateType))
            {
                // Similarly to the interface and delegate case, arrays are covariant in their element type and
                // so we can potentially produce an array type that is accessible.
                // Example: PrivateConcreteFoo[] --> PublicAbstractFoo[]
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsNullableType())
            {
                // We have an inaccessible nullable type, which means that the best we can do is System.ValueType.
                typeDst = this.GetOptPredefAgg(PredefinedType.PT_VALUE).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType())
            {
                // We have an inaccessible array type for which we could not earlier find a better array type
                // with a covariant conversion, so the best we can do is System.Array.
                typeDst = this.GetReqPredefAgg(PredefinedType.PT_ARRAY).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            Debug.Assert(typeSrc.IsAggregateType());

            if (typeSrc.IsAggregateType())
            {
                // We have an AggregateType, so recurse on its base class.
                AggregateType aggType = typeSrc.AsAggregateType();
                AggregateType baseType = aggType.GetBaseClass();

                if (baseType == null)
                {
                    // This happens with interfaces, for instance. But in that case, the
                    // conversion to object does exist, is an implicit reference conversion,
                    // and so we will use it.
                    baseType = this.GetReqPredefAgg(PredefinedType.PT_OBJECT).getThisType();
                }

                return GetBestAccessibleType(semanticChecker, bindingContext, baseType, out typeDst);
            }

            return false;
        }
Ejemplo n.º 49
0
        /***************************************************************************************************
        *   Lookup must be called before anything else can be called.
        *
        *   typeSrc - Must be an AggregateType or TypeParameterType.
        *   obj - the expression through which the member is being accessed. This is used for accessibility
        *       of protected members and for constructing a MEMGRP from the results of the lookup.
        *       It is legal for obj to be an EK_CLASS, in which case it may be used for accessibility, but
        *       will not be used for MEMGRP construction.
        *   symWhere - the symbol from with the name is being accessed (for checking accessibility).
        *   name - the name to look for.
        *   arity - the number of type args specified. Only members that support this arity are found.
        *       Note that when arity is zero, all methods are considered since we do type argument
        *       inferencing.
        *
        *   flags - See MemLookFlags.
        *       TypeVarsAllowed only applies to the most derived type (not base types).
        ***************************************************************************************************/
        public bool Lookup(CSemanticChecker checker, CType typeSrc, EXPR obj, ParentSymbol symWhere, Name name, int arity, MemLookFlags flags)
        {
            Debug.Assert((flags & ~MemLookFlags.All) == 0);
            Debug.Assert(obj == null || obj.type != null);
            Debug.Assert(typeSrc.IsAggregateType() || typeSrc.IsTypeParameterType());
            Debug.Assert(checker != null);

            _prgtype = _rgtypeStart;

            // Save the inputs for error handling, etc.
            _pSemanticChecker = checker;
            _pSymbolLoader    = checker.GetSymbolLoader();
            _typeSrc          = typeSrc;
            _obj      = (obj != null && !obj.isCLASS()) ? obj : null;
            _symWhere = symWhere;
            _name     = name;
            _arity    = arity;
            _flags    = flags;

            if ((_flags & MemLookFlags.BaseCall) != 0)
            {
                _typeQual = null;
            }
            else if ((_flags & MemLookFlags.Ctor) != 0)
            {
                _typeQual = _typeSrc;
            }
            else if (obj != null)
            {
                _typeQual = (CType)obj.type;
            }
            else
            {
                _typeQual = null;
            }

            // Determine what to search.
            AggregateType typeCls1  = null;
            AggregateType typeIface = null;
            TypeArray     ifaces    = BSYMMGR.EmptyTypeArray();
            AggregateType typeCls2  = null;

            if (typeSrc.IsTypeParameterType())
            {
                Debug.Assert((_flags & (MemLookFlags.Ctor | MemLookFlags.NewObj | MemLookFlags.Operator | MemLookFlags.BaseCall | MemLookFlags.TypeVarsAllowed)) == 0);
                _flags  &= ~MemLookFlags.TypeVarsAllowed;
                ifaces   = typeSrc.AsTypeParameterType().GetInterfaceBounds();
                typeCls1 = typeSrc.AsTypeParameterType().GetEffectiveBaseClass();
                if (ifaces.size > 0 && typeCls1.isPredefType(PredefinedType.PT_OBJECT))
                {
                    typeCls1 = null;
                }
            }
            else if (!typeSrc.isInterfaceType())
            {
                typeCls1 = typeSrc.AsAggregateType();

                if (typeCls1.IsWindowsRuntimeType())
                {
                    ifaces = typeCls1.GetWinRTCollectionIfacesAll(GetSymbolLoader());
                }
            }
            else
            {
                Debug.Assert(typeSrc.isInterfaceType());
                Debug.Assert((_flags & (MemLookFlags.Ctor | MemLookFlags.NewObj | MemLookFlags.Operator | MemLookFlags.BaseCall)) == 0);
                typeIface = typeSrc.AsAggregateType();
                ifaces    = typeIface.GetIfacesAll();
            }

            if (typeIface != null || ifaces.size > 0)
            {
                typeCls2 = GetSymbolLoader().GetReqPredefType(PredefinedType.PT_OBJECT);
            }

            // Search the class first (except possibly object).
            if (typeCls1 == null || LookupInClass(typeCls1, ref typeCls2))
            {
                // Search the interfaces.
                if ((typeIface != null || ifaces.size > 0) && LookupInInterfaces(typeIface, ifaces) && typeCls2 != null)
                {
                    // Search object last.
                    Debug.Assert(typeCls2 != null && typeCls2.isPredefType(PredefinedType.PT_OBJECT));

                    AggregateType result = null;
                    LookupInClass(typeCls2, ref result);
                }
            }

            // if we are requested with extension methods
            _results = new CMemberLookupResults(GetAllTypes(), _name);

            return(!FError());
        }
Ejemplo n.º 50
0
        private static bool CheckSingleConstraint(CSemanticChecker checker, ErrorHandling errHandling, Symbol symErr, TypeParameterType var, CType arg, TypeArray typeArgsCls, TypeArray typeArgsMeth, CheckConstraintsFlags flags)
        {
            bool fReportErrors = 0 == (flags & CheckConstraintsFlags.NoErrors);

            if (arg.IsOpenTypePlaceholderType())
            {
                return(true);
            }

            if (arg.IsErrorType())
            {
                // Error should have been reported previously.
                return(false);
            }

            if (checker.CheckBogus(arg))
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_BogusType, arg);
                }

                return(false);
            }

            if (arg.IsPointerType() || arg.isSpecialByRefType())
            {
                if (fReportErrors)
                {
                    errHandling.Error(ErrorCode.ERR_BadTypeArgument, arg);
                }

                return(false);
            }

            if (arg.isStaticClass())
            {
                if (fReportErrors)
                {
                    checker.ReportStaticClassError(null, arg, ErrorCode.ERR_GenericArgIsStaticClass);
                }

                return(false);
            }

            bool fError = false;

            if (var.HasRefConstraint() && !arg.IsRefType())
            {
                if (fReportErrors)
                {
                    errHandling.ErrorRef(ErrorCode.ERR_RefConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                }

                fError = true;
            }

            TypeArray bnds     = checker.GetSymbolLoader().GetTypeManager().SubstTypeArray(var.GetBounds(), typeArgsCls, typeArgsMeth);
            int       itypeMin = 0;

            if (var.HasValConstraint())
            {
                // If we have a type variable that is constrained to a value type, then we
                // want to check if its a nullable type, so that we can report the
                // constraint error below. In order to do this however, we need to check
                // that either the type arg is not a value type, or it is a nullable type.
                //
                // To check whether or not its a nullable type, we need to get the resolved
                // bound from the type argument and check against that.

                bool bIsValueType = arg.IsValType();
                bool bIsNullable  = arg.IsNullableType();
                if (bIsValueType && arg.IsTypeParameterType())
                {
                    TypeArray pArgBnds = arg.AsTypeParameterType().GetBounds();
                    if (pArgBnds.Count > 0)
                    {
                        bIsNullable = pArgBnds[0].IsNullableType();
                    }
                }

                if (!bIsValueType || bIsNullable)
                {
                    if (fReportErrors)
                    {
                        errHandling.ErrorRef(ErrorCode.ERR_ValConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
                    }

                    fError = true;
                }

                // Since FValCon() is set it is redundant to check System.ValueType as well.
                if (bnds.Count != 0 && bnds[0].isPredefType(PredefinedType.PT_VALUE))
                {
                    itypeMin = 1;
                }
            }

            for (int j = itypeMin; j < bnds.Count; j++)
            {
                CType typeBnd = bnds[j];
                if (!SatisfiesBound(checker, arg, typeBnd))
                {
                    if (fReportErrors)
                    {
                        // The bound isn't satisfied because of a constraint type. Explain to the user why not.
                        // There are 4 main cases, based on the type of the supplied type argument:
                        //  - reference type, or type parameter known to be a reference type
                        //  - nullable type, from which there is a boxing conversion to the constraint type(see below for details)
                        //  - type variable
                        //  - value type
                        // These cases are broken out because: a) The sets of conversions which can be used
                        // for constraint satisfaction is different based on the type argument supplied,
                        // and b) Nullable is one funky type, and user's can use all the help they can get
                        // when using it.
                        ErrorCode error;
                        if (arg.IsRefType())
                        {
                            // A reference type can only satisfy bounds to types
                            // to which they have an implicit reference conversion
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedRefType;
                        }
                        else if (arg.IsNullableType() && checker.GetSymbolLoader().HasBaseConversion(arg.AsNullableType().GetUnderlyingType(), typeBnd))    // This is inlining FBoxingConv
                        {
                            // nullable types do not satisfy bounds to every type that they are boxable to
                            // They only satisfy bounds of object and ValueType
                            if (typeBnd.isPredefType(PredefinedType.PT_ENUM) || arg.AsNullableType().GetUnderlyingType() == typeBnd)
                            {
                                // Nullable types don't satisfy bounds of EnumType, or the underlying type of the enum
                                // even though the conversion from Nullable to these types is a boxing conversion
                                // This is a rare case, because these bounds can never be directly stated ...
                                // These bounds can only occur when one type paramter is constrained to a second type parameter
                                // and the second type parameter is instantiated with Enum or the underlying type of the first type
                                // parameter
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableEnum;
                            }
                            else
                            {
                                // Nullable types don't satisfy the bounds of any interface type
                                // even when there is a boxing conversion from the Nullable type to
                                // the interface type. This will be a relatively common scenario
                                // so we cal it out separately from the previous case.
                                Debug.Assert(typeBnd.isInterfaceType());
                                error = ErrorCode.ERR_GenericConstraintNotSatisfiedNullableInterface;
                            }
                        }
                        else if (arg.IsTypeParameterType())
                        {
                            // Type variables can satisfy bounds through boxing and type variable conversions
                            Debug.Assert(!arg.IsRefType());
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedTyVar;
                        }
                        else
                        {
                            // Value types can only satisfy bounds through boxing conversions.
                            // Note that the exceptional case of Nullable types and boxing is handled above.
                            error = ErrorCode.ERR_GenericConstraintNotSatisfiedValType;
                        }
                        errHandling.Error(error, new ErrArgRef(symErr), new ErrArg(typeBnd, ErrArgFlags.Unique), var, new ErrArgRef(arg, ErrArgFlags.Unique));
                    }
                    fError = true;
                }
            }

            // Check the newable constraint.
            if (!var.HasNewConstraint() || arg.IsValType())
            {
                return(!fError);
            }

            if (arg.isClassType())
            {
                AggregateSymbol agg = arg.AsAggregateType().getAggregate();

                // Due to late binding nature of IDE created symbols, the AggregateSymbol might not
                // have all the information necessary yet, if it is not fully bound.
                // by calling LookupAggMember, it will ensure that we will update all the
                // information necessary at least for the given method.
                checker.GetSymbolLoader().LookupAggMember(checker.GetNameManager().GetPredefName(PredefinedName.PN_CTOR), agg, symbmask_t.MASK_ALL);

                if (agg.HasPubNoArgCtor() && !agg.IsAbstract())
                {
                    return(!fError);
                }
            }
            else if (arg.IsTypeParameterType() && arg.AsTypeParameterType().HasNewConstraint())
            {
                return(!fError);
            }

            if (fReportErrors)
            {
                errHandling.ErrorRef(ErrorCode.ERR_NewConstraintNotSatisfied, symErr, new ErrArgNoRef(var), arg);
            }

            return(false);
        }