public double MinimizeOneStep(Matrix parameters) { // initial value of the function; callee knows the size of the returned vector var errorVector = function(parameters); var error = errorVector.Dot(errorVector); // Jacobian; callee knows the size of the returned matrix var J = jacobianFunction(parameters); // J'*J var JtJ = new Matrix(parameters.Size, parameters.Size); //stopWatch.Restart(); //JtJ.MultATA(J, J); // this is the big calculation that could be parallelized JtJ.MultATAParallel(J, J); //Console.WriteLine("JtJ: J size {0}x{1} {2}ms", J.Rows, J.Cols, stopWatch.ElapsedMilliseconds); // J'*error var JtError = new Matrix(parameters.Size, 1); //stopWatch.Restart(); JtError.MultATA(J, errorVector); // error vector must be a column vector //Console.WriteLine("JtError: errorVector size {0}x{1} {2}ms", errorVector.Rows, errorVector.Cols, stopWatch.ElapsedMilliseconds); // allocate some space var JtJaugmented = new Matrix(parameters.Size, parameters.Size); var JtJinv = new Matrix(parameters.Size, parameters.Size); var delta = new Matrix(parameters.Size, 1); var newParameters = new Matrix(parameters.Size, 1); // find a value of lambda that reduces error double lambda = initialLambda; while (true) { // augment J'*J: J'*J += lambda*(diag(J)) JtJaugmented.Copy(JtJ); for (int i = 0; i < parameters.Size; i++) JtJaugmented[i, i] = (1.0 + lambda) * JtJ[i, i]; //WriteMatrixToFile(errorVector, "errorVector"); //WriteMatrixToFile(J, "J"); //WriteMatrixToFile(JtJaugmented, "JtJaugmented"); //WriteMatrixToFile(JtError, "JtError"); // solve for delta: (J'*J + lambda*(diag(J)))*delta = J'*error JtJinv.Inverse(JtJaugmented); delta.Mult(JtJinv, JtError); // new parameters = parameters - delta [why not add?] newParameters.Sub(parameters, delta); // evaluate function, compute error var newErrorVector = function(newParameters); double newError = newErrorVector.Dot(newErrorVector); // if error is reduced, divide lambda by 10 bool improvement; if (newError < error) { lambda /= lambdaIncrement; improvement = true; } else // if not, multiply lambda by 10 { lambda *= lambdaIncrement; improvement = false; } // termination criteria: // reduction in error is too small var diff = new Matrix(errorVector.Size, 1); diff.Sub(errorVector, newErrorVector); double diffSq = diff.Dot(diff); double errorDelta = Math.Sqrt(diffSq / error); if (errorDelta < minimumReduction) state = States.ReductionStepTooSmall; // lambda is too big if (lambda > maximumLambda) state = States.LambdaTooLarge; // change in parameters is too small [not implemented] // if we made an improvement, accept the new parameters if (improvement) { parameters.Copy(newParameters); error = newError; break; } // if we meet termination criteria, break if (state != States.Running) break; } rmsError = Math.Sqrt(error / errorVector.Size); return rmsError; }
static public void PlaneFit(IList<Matrix> X, out Matrix R, out Matrix t, out Matrix d2) { int n = X.Count; var mu = new Matrix(3, 1); for (int i = 0; i < n; i++) mu.Add(X[i]); mu.Scale(1f / (float)n); var A = new Matrix(3, 3); var xc = new Matrix(3, 1); var M = new Matrix(3, 3); for (int i = 0; i < X.Count; i++) { var x = X[i]; xc.Sub(x, mu); M.Outer(xc, xc); A.Add(M); } var V = new Matrix(3, 3); var d = new Matrix(3, 1); A.Eig(V, d); // eigenvalues in ascending order // arrange in descending order so that z = 0 var V2 = new Matrix(3, 3); for (int i = 0; i < 3; i++) { V2[i, 2] = V[i, 0]; V2[i, 1] = V[i, 1]; V2[i, 0] = V[i, 2]; } d2 = new Matrix(3, 1); d2[2] = d[0]; d2[1] = d[1]; d2[0] = d[2]; R = new Matrix(3, 3); R.Transpose(V2); if (R.Det3x3() < 0) R.Scale(-1); t = new Matrix(3, 1); t.Mult(R, mu); t.Scale(-1); // eigenvalues are the sum of squared distances in each direction // i.e., min eigenvalue is the sum of squared distances to the plane = d2[2] // compute the distance to the plane by transforming to the plane and take z-coordinate: // xPlane = R*x + t; distance = xPlane[2] }
public double MinimizeOneStep(Matrix parameters) { // initial value of the function; callee knows the size of the returned vector var errorVector = function(parameters); var error = errorVector.Dot(errorVector); // Jacobian; callee knows the size of the returned matrix var J = jacobianFunction(parameters); // J'*J var JtJ = new Matrix(parameters.Size, parameters.Size); //stopWatch.Restart(); //JtJ.MultATA(J, J); // this is the big calculation that could be parallelized JtJ.MultATAParallel(J, J); //Console.WriteLine("JtJ: J size {0}x{1} {2}ms", J.Rows, J.Cols, stopWatch.ElapsedMilliseconds); // J'*error var JtError = new Matrix(parameters.Size, 1); //stopWatch.Restart(); JtError.MultATA(J, errorVector); // error vector must be a column vector //Console.WriteLine("JtError: errorVector size {0}x{1} {2}ms", errorVector.Rows, errorVector.Cols, stopWatch.ElapsedMilliseconds); // allocate some space var JtJaugmented = new Matrix(parameters.Size, parameters.Size); var JtJinv = new Matrix(parameters.Size, parameters.Size); var delta = new Matrix(parameters.Size, 1); var newParameters = new Matrix(parameters.Size, 1); // find a value of lambda that reduces error double lambda = initialLambda; while (true) { // augment J'*J: J'*J += lambda*(diag(J)) JtJaugmented.Copy(JtJ); for (int i = 0; i < parameters.Size; i++) { JtJaugmented[i, i] = (1.0 + lambda) * JtJ[i, i]; } //WriteMatrixToFile(errorVector, "errorVector"); //WriteMatrixToFile(J, "J"); //WriteMatrixToFile(JtJaugmented, "JtJaugmented"); //WriteMatrixToFile(JtError, "JtError"); // solve for delta: (J'*J + lambda*(diag(J)))*delta = J'*error JtJinv.Inverse(JtJaugmented); delta.Mult(JtJinv, JtError); // new parameters = parameters - delta [why not add?] newParameters.Sub(parameters, delta); // evaluate function, compute error var newErrorVector = function(newParameters); double newError = newErrorVector.Dot(newErrorVector); // if error is reduced, divide lambda by 10 bool improvement; if (newError < error) { lambda /= lambdaIncrement; improvement = true; } else // if not, multiply lambda by 10 { lambda *= lambdaIncrement; improvement = false; } // termination criteria: // reduction in error is too small var diff = new Matrix(errorVector.Size, 1); diff.Sub(errorVector, newErrorVector); double diffSq = diff.Dot(diff); double errorDelta = Math.Sqrt(diffSq / error); if (errorDelta < minimumReduction) { state = States.ReductionStepTooSmall; } // lambda is too big if (lambda > maximumLambda) { state = States.LambdaTooLarge; } // change in parameters is too small [not implemented] // if we made an improvement, accept the new parameters if (improvement) { parameters.Copy(newParameters); error = newError; break; } // if we meet termination criteria, break if (state != States.Running) { break; } } rmsError = Math.Sqrt(error / errorVector.Size); return(rmsError); }
static public void PlaneFit(IList <Matrix> X, out Matrix R, out Matrix t, out Matrix d2) { int n = X.Count; var mu = new Matrix(3, 1); for (int i = 0; i < n; i++) { mu.Add(X[i]); } mu.Scale(1f / (float)n); var A = new Matrix(3, 3); var xc = new Matrix(3, 1); var M = new Matrix(3, 3); for (int i = 0; i < X.Count; i++) { var x = X[i]; xc.Sub(x, mu); M.Outer(xc, xc); A.Add(M); } var V = new Matrix(3, 3); var d = new Matrix(3, 1); A.Eig(V, d); // eigenvalues in ascending order // arrange in descending order so that z = 0 var V2 = new Matrix(3, 3); for (int i = 0; i < 3; i++) { V2[i, 2] = V[i, 0]; V2[i, 1] = V[i, 1]; V2[i, 0] = V[i, 2]; } d2 = new Matrix(3, 1); d2[2] = d[0]; d2[1] = d[1]; d2[0] = d[2]; R = new Matrix(3, 3); R.Transpose(V2); if (R.Det3x3() < 0) { R.Scale(-1); } t = new Matrix(3, 1); t.Mult(R, mu); t.Scale(-1); // eigenvalues are the sum of squared distances in each direction // i.e., min eigenvalue is the sum of squared distances to the plane = d2[2] // compute the distance to the plane by transforming to the plane and take z-coordinate: // xPlane = R*x + t; distance = xPlane[2] }
public static double PlaneFit(IList<Matrix> points, out Matrix X, out double D) { X = new Matrix(3, 1); var mu = new RoomAliveToolkit.Matrix(3, 1); for (int i = 0; i < points.Count; i++) mu.Add(points[i]); mu.Scale(1f / (float)points.Count); var A = new RoomAliveToolkit.Matrix(3, 3); var pc = new RoomAliveToolkit.Matrix(3, 1); var M = new RoomAliveToolkit.Matrix(3, 3); for (int i = 0; i < points.Count; i++) { var p = points[i]; pc.Sub(p, mu); M.Outer(pc, pc); A.Add(M); } var V = new RoomAliveToolkit.Matrix(3, 3); var d = new RoomAliveToolkit.Matrix(3, 1); A.Eig(V, d); // TODO: replace with 3x3 version? //Console.WriteLine("------"); //Console.WriteLine(A); //Console.WriteLine(V); //Console.WriteLine(d); double minEigenvalue = Double.MaxValue; int minEigenvaluei = 0; for (int i = 0; i < 3; i++) if (d[i] < minEigenvalue) { minEigenvalue = d[i]; minEigenvaluei = i; } X.CopyCol(V, minEigenvaluei); D = -X.Dot(mu); // min eigenvalue is the sum of squared distances to the plane // signed distance is: double distance = X.Dot(point) + D; return minEigenvalue; }