/** * Trains the statistical model * * param trainData training data that can be loaded from file using TrainData::loadFromCSV or * created with TrainData::create. * new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). * return automatically generated */ public bool train(TrainData trainData) { ThrowIfDisposed(); if (trainData != null) { trainData.ThrowIfDisposed(); } return(ml_StatModel_train_12(nativeObj, trainData.getNativeObjAddr())); }
// // C++: float cv::ml::StatModel::calcError(Ptr_TrainData data, bool test, Mat& resp) // /** * Computes error on the training or test dataset * * param data the training data * param test if true, the error is computed over the test subset of the data, otherwise it's * computed over the training subset of the data. Please note that if you loaded a completely * different dataset to evaluate already trained classifier, you will probably want not to set * the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so * that the error is computed for the whole new set. Yes, this sounds a bit confusing. * param resp the optional output responses. * * The method uses StatModel::predict to compute the error. For regression models the error is * computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). * return automatically generated */ public float calcError(TrainData data, bool test, Mat resp) { ThrowIfDisposed(); if (data != null) { data.ThrowIfDisposed(); } if (resp != null) { resp.ThrowIfDisposed(); } return(ml_StatModel_calcError_10(nativeObj, data.getNativeObjAddr(), test, resp.nativeObj)); }
//javadoc: StatModel::train(trainData) public bool train(TrainData trainData) { ThrowIfDisposed(); if (trainData != null) { trainData.ThrowIfDisposed(); } #if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER bool retVal = ml_StatModel_train_12(nativeObj, trainData.getNativeObjAddr()); return(retVal); #else return(false); #endif }
// // C++: float cv::ml::StatModel::calcError(Ptr_TrainData data, bool test, Mat& resp) // //javadoc: StatModel::calcError(data, test, resp) public float calcError(TrainData data, bool test, Mat resp) { ThrowIfDisposed(); if (data != null) { data.ThrowIfDisposed(); } if (resp != null) { resp.ThrowIfDisposed(); } #if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER float retVal = ml_StatModel_calcError_10(nativeObj, data.getNativeObjAddr(), test, resp.nativeObj); return(retVal); #else return(-1); #endif }