示例#1
0
        public override void Update(NDArray labels, NDArray preds)
        {
            CheckLabelShapes(labels, preds);
            var pred_label  = preds.Argsort().AsNumpy().astype(NPTypeCode.Int32); //ToDo: Use numpy argpartition
            var label       = labels.AsNumpy().astype(NPTypeCode.Int32);
            var num_samples = pred_label.shape[0];
            var num_dims    = pred_label.shape.Length;

            if (num_dims == 1)
            {
                sum_metric += (pred_label.flat == label.flat).sum();
            }
            else if (num_dims == 2)
            {
                var num_classes = pred_label.shape[1];
                TopK = Math.Min(num_classes, TopK);
                for (var j = 0; j < TopK; j++)
                {
                    float num_correct = (pred_label[":", num_classes - 1 - j].flat == label.flat).sum();
                    sum_metric        += num_correct;
                    global_sum_metric += num_correct;
                }
            }

            num_inst        += num_samples;
            global_num_inst += num_samples;
        }
示例#2
0
        public override void Update(NDArray labels, NDArray preds)
        {
            CheckLabelShapes(labels, preds);
            var pred_label  = preds.Argsort().AsType(DType.Int32); //ToDo: Use numpy argpartition
            var label       = labels.AsType(DType.Int32);
            var num_samples = pred_label.Shape[0];
            var num_dims    = pred_label.Shape.Dimension;

            if (num_dims == 1)
            {
                sum_metric += nd.Equal(pred_label.Ravel(), label.Ravel()).Sum();
            }

            else if (num_dims == 2)
            {
                var num_classes = pred_label.Shape[1];
                TopK = Math.Min(num_classes, TopK);
                for (var j = 0; j < TopK; j++)
                {
                    float num_correct = nd.Equal(pred_label[$":,{num_classes - 1 - j}"].Ravel(), label.Ravel()).Sum();
                    sum_metric        += num_correct;
                    global_sum_metric += num_correct;
                }
            }

            num_inst        += num_samples;
            global_num_inst += num_samples;
        }