示例#1
0
        public override NDArray ReduceAMin(NDArray arr, int? axis_, bool keepdims = false, NPTypeCode? typeCode = null)
        {
            //in order to iterate an axis:
            //consider arange shaped (1,2,3,4) when we want to summarize axis 1 (2nd dimension which its value is 2)
            //the size of the array is [1, 2, n, m] all shapes after 2nd multiplied gives size
            //the size of what we need to reduce is the size of the shape of the given axis (shape[axis])
            var shape = arr.Shape;
            if (shape.IsEmpty)
                return arr;

            if (shape.IsScalar || shape.size == 1 && shape.dimensions.Length == 1)
            {
                var r = typeCode.HasValue ? Cast(arr, typeCode.Value, true) : arr.Clone();
                if (keepdims)
                    r.Storage.ExpandDimension(0);
                else if (!r.Shape.IsScalar && r.Shape.size == 1 && r.ndim == 1)
                    r.Storage.Reshape(Shape.Scalar);

                return r;
            }

            if (axis_ == null)
            {
                var r = NDArray.Scalar(amin_elementwise(arr, typeCode));
                if (keepdims)
                    r.Storage.ExpandDimension(0);
                else if (!r.Shape.IsScalar && r.Shape.size == 1 && r.ndim == 1)
                    r.Storage.Reshape(Shape.Scalar);

                return r;
            }

            var axis = axis_.Value;
            while (axis < 0)
                axis = arr.ndim + axis; //handle negative axis

            if (axis >= arr.ndim)
                throw new ArgumentOutOfRangeException(nameof(axis));

            if (shape[axis] == 1)
            {
                //if the given div axis is 1 and can be squeezed out.
                if (keepdims)
                    return new NDArray(arr.Storage.Alias());
                return np.squeeze_fast(arr, axis);
            }

            //handle keepdims
            Shape axisedShape = Shape.GetAxis(shape, axis);

            //prepare ret
            var ret = new NDArray(typeCode ?? arr.GetTypeCode, axisedShape, false);
            var iterAxis = new NDCoordinatesAxisIncrementor(ref shape, axis);
            var iterRet = new NDCoordinatesIncrementor(ref axisedShape);
            var iterIndex = iterRet.Index;
            var slices = iterAxis.Slices;

#if _REGEN1
            #region Compute
            switch (arr.GetTypeCode)
		    {
			    %foreach supported_numericals,supported_numericals_lowercase%
			    case NPTypeCode.#1: 
                {
                    switch (ret.GetTypeCode)
		            {
			            %foreach supported_numericals,supported_numericals_lowercase,supported_numericals_defaultvals%
			            case NPTypeCode.#101: 
                        {
                            do
                            {
                                var iter = arr[slices].AsIterator<#2>();
示例#2
0
        public override NDArray Cast(NDArray nd, NPTypeCode dtype, bool copy)
        {
            if (dtype == NPTypeCode.Empty)
            {
                throw new ArgumentNullException(nameof(dtype));
            }

            //incase its an empty array
            if (nd.Shape.IsEmpty)
            {
                if (copy)
                {
                    return(new NDArray(dtype));
                }

                nd.Storage = new UnmanagedStorage(dtype);
                return(nd);
            }

            //incase its a scalar
            if (nd.Shape.IsScalar)
            {
                var ret = NDArray.Scalar(nd.GetAtIndex(0), dtype);
                if (copy)
                {
                    return(ret);
                }

                nd.Storage = ret.Storage;
                return(nd);
            }

            //incase its a (1,) shaped
            if (nd.Shape.size == 1 && nd.Shape.NDim == 1)
            {
                var ret = new NDArray(ArraySlice.Scalar(nd.GetAtIndex(0), dtype), Shape.Vector(1));
                if (copy)
                {
                    return(ret);
                }

                nd.Storage = ret.Storage;
                return(nd);
            }

            //regular clone
            if (nd.GetTypeCode == dtype)
            {
                //casting not needed
                return(copy ? clone() : nd);
            }
            else
            {
                //casting needed
                if (copy)
                {
                    if (nd.Shape.IsSliced)
                    {
                        nd = clone();
                    }

                    return(new NDArray(new UnmanagedStorage(ArraySlice.FromMemoryBlock(nd.Array.CastTo(dtype), false), nd.Shape)));
                }
                else
                {
                    var storage = nd.Shape.IsSliced ? nd.Storage.Clone() : nd.Storage;
                    nd.Storage = new UnmanagedStorage(ArraySlice.FromMemoryBlock(storage.InternalArray.CastTo(dtype), false), storage.Shape);
                    return(nd);
                }
            }

            NDArray clone() => nd.Clone();
        }
示例#3
0
        //This function feeds an image into the neural network and applies the backpropagation
        public void ProcessNeuralNetwork(TestCase testCase, bool storeIncrementalSteps)
        {
            //Start
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=0
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=0

            NDArray image784x1 = testCase.AsNDArray();

            //Hidden neuron calculations
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=18
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=18

            var hiddenPreSigmoid20x1 = hiddenBiases20x1 + np.matmul(inputToHiddenWeights20x784, image784x1);

            if (storeIncrementalSteps)
            {
                hiddenNeuronsBeforeSigmoid20x1 = hiddenPreSigmoid20x1.Clone();
            }

            //normalize with sigmoid
            currentHiddenNeurons20X1 = np.divide(1, (np.add(1, np.exp(-hiddenPreSigmoid20x1))));

            //Final output neuron calculation
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=78
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=78

            //map from inputs to output and add bias
            var outputPreSigmoid10x1 = outputBiases10x1 + np.matmul(hiddenToOutputWeights10x20, currentHiddenNeurons20X1);

            if (storeIncrementalSteps)
            {
                outputNeuronsBeforeSigmoid10x1 = outputPreSigmoid10x1.Clone();
            }

            //normalize with sigmoid
            currentOutputNeurons10x1 = 1 / (1 + np.exp(-outputPreSigmoid10x1));

            expectedOutput10x1 = testCase.AsLabelNDArray();

            //np.argmax(o) gives the index of the maximum number.  This is simply checking to see which output was switched on
            detected = np.argmax(currentOutputNeurons10x1);

            //Start back propagation by figuring out by how much the output was "wrong"
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=108
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=108

            expectedOutputDelta10X1 = currentOutputNeurons10x1 - expectedOutput10x1;

            //Calculate the hidden to output weights "wrongness" using the output's "wrongness"
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=138
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=138

            //Multiply difference from expected by the hidden neurons to make a matrix to adjust the hidden to output weights
            hiddenToOutputWeightAdjustment10X20 = np.matmul(expectedOutputDelta10X1, np.transpose(currentHiddenNeurons20X1));

            if (storeIncrementalSteps)
            {
                hiddenToOutputWeightsPreAdjust10x20 = hiddenToOutputWeights10x20.Clone();
            }

            //Adjust the hidden to output weights by the calculated "wrongness"
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=198
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=198"

            //adjust the hidden to output weights
            hiddenToOutputWeights10x20 += -learnRate * hiddenToOutputWeightAdjustment10X20;

            if (storeIncrementalSteps)
            {
                outputBiasPreAdjust10x1 = outputBiases10x1.Clone();
            }

            //Adjust the output biases
            outputBiases10x1 += -learnRate * expectedOutputDelta10X1;

            //Now move on to building the matrix to adjust the input to hidden weights
            //differential of sigmoid is sigmoid * (1 - sigmoid). Remember above where we used sigmoid function on currentHiddenNeurons?
            //Result is 20x1 matrix
            if (storeIncrementalSteps)
            {
                oneMinusHiddenNeurons20x1 = 1 - currentHiddenNeurons20X1;
            }

            //Calculate the sigmoid differential of the hidden neurons to use later
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=204
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=204

            hiddenNeuronsSigmoidDifferential20X1 = (currentHiddenNeurons20X1 * (1 - currentHiddenNeurons20X1));

            //Multiply the "wrongness" of the output by the adjusted hidden to output weights to get the weights "wrongness"
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=264
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=264

            //Combine expectedOutputDelta (10X1) with the hiddenToOutputWeights (10x20), resulting in a 20x1 matrix
            hiddenToOutputWeightsXExpectedOutputDelta20x1 = np.matmul(np.transpose(hiddenToOutputWeights10x20), expectedOutputDelta10X1);

            //Multiply the "wrongness" of the adjusted hidden to output weights by the hidden neuron sigmoid differential to get the "wrongness" of each hidden neuron
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=324
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=324"

            //Then combine in the differential of the sigmoid (20X1) X (20X1) = 20X1
            expectedHiddenDelta20X1 = hiddenToOutputWeightsXExpectedOutputDelta20x1 * hiddenNeuronsSigmoidDifferential20X1;

            //Multiply the "wrongness" of each hidden neuron by the original image to calculate the "wrongness" of the input to hidden matrix
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=384
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=384

            //Then multiply by the image to make a 20x784 matrix
            inputToHiddenWeightAdjustment20x784 = np.matmul(expectedHiddenDelta20X1, np.transpose(image784x1));

            if (storeIncrementalSteps)
            {
                inputToHiddenWeightsPreAdjust20x784 = inputToHiddenWeights20x784.Clone();
            }

            //Apply the "wrongness" of the input to hidden matrix to the input to hidden matrix
            //10 fps: https://www.youtube.com/watch?v=zpCFjNjuBaY&t=453
            //60 fps: https://www.youtube.com/watch?v=IQdxHrfdMwk&t=453

            //Finally we adjust the actual weights using our calculated adjustment matrix
            inputToHiddenWeights20x784 += -learnRate * inputToHiddenWeightAdjustment20x784;
            if (storeIncrementalSteps)
            {
                hiddenNeuronBiasPreAdjust20x1 = hiddenBiases20x1.Clone();
            }

            //And adjust the bias using a portion of how far off the hidden neurons were
            hiddenBiases20x1 += -learnRate * expectedHiddenDelta20X1;
        }