Exemplo n.º 1
0
    //***********************************************************************
    // Tests the correct implementation of the modulo exponential and
    // inverse modulo functions using RSA encryption and decryption.  The two
    // pseudoprimes p and q are fixed, but the two RSA keys are generated
    // for each round of testing.
    //***********************************************************************

    public static void RSATest2(int rounds)
    {
      Random rand = new Random();
      byte[] val = new byte[64];

      byte[] pseudoPrime1 = {
                              (byte) 0x85, (byte) 0x84, (byte) 0x64, (byte) 0xFD,
                              (byte) 0x70, (byte) 0x6A, (byte) 0x9F, (byte) 0xF0,
                              (byte) 0x94, (byte) 0x0C, (byte) 0x3E, (byte) 0x2C,
                              (byte) 0x74, (byte) 0x34, (byte) 0x05, (byte) 0xC9,
                              (byte) 0x55, (byte) 0xB3, (byte) 0x85, (byte) 0x32,
                              (byte) 0x98, (byte) 0x71, (byte) 0xF9, (byte) 0x41,
                              (byte) 0x21, (byte) 0x5F, (byte) 0x02, (byte) 0x9E,
                              (byte) 0xEA, (byte) 0x56, (byte) 0x8D, (byte) 0x8C,
                              (byte) 0x44, (byte) 0xCC, (byte) 0xEE, (byte) 0xEE,
                              (byte) 0x3D, (byte) 0x2C, (byte) 0x9D, (byte) 0x2C,
                              (byte) 0x12, (byte) 0x41, (byte) 0x1E, (byte) 0xF1,
                              (byte) 0xC5, (byte) 0x32, (byte) 0xC3, (byte) 0xAA,
                              (byte) 0x31, (byte) 0x4A, (byte) 0x52, (byte) 0xD8,
                              (byte) 0xE8, (byte) 0xAF, (byte) 0x42, (byte) 0xF4,
                              (byte) 0x72, (byte) 0xA1, (byte) 0x2A, (byte) 0x0D,
                              (byte) 0x97, (byte) 0xB1, (byte) 0x31, (byte) 0xB3,};

      byte[] pseudoPrime2 = {
                              (byte) 0x99, (byte) 0x98, (byte) 0xCA, (byte) 0xB8,
                              (byte) 0x5E, (byte) 0xD7, (byte) 0xE5, (byte) 0xDC,
                              (byte) 0x28, (byte) 0x5C, (byte) 0x6F, (byte) 0x0E,
                              (byte) 0x15, (byte) 0x09, (byte) 0x59, (byte) 0x6E,
                              (byte) 0x84, (byte) 0xF3, (byte) 0x81, (byte) 0xCD,
                              (byte) 0xDE, (byte) 0x42, (byte) 0xDC, (byte) 0x93,
                              (byte) 0xC2, (byte) 0x7A, (byte) 0x62, (byte) 0xAC,
                              (byte) 0x6C, (byte) 0xAF, (byte) 0xDE, (byte) 0x74,
                              (byte) 0xE3, (byte) 0xCB, (byte) 0x60, (byte) 0x20,
                              (byte) 0x38, (byte) 0x9C, (byte) 0x21, (byte) 0xC3,
                              (byte) 0xDC, (byte) 0xC8, (byte) 0xA2, (byte) 0x4D,
                              (byte) 0xC6, (byte) 0x2A, (byte) 0x35, (byte) 0x7F,
                              (byte) 0xF3, (byte) 0xA9, (byte) 0xE8, (byte) 0x1D,
                              (byte) 0x7B, (byte) 0x2C, (byte) 0x78, (byte) 0xFA,
                              (byte) 0xB8, (byte) 0x02, (byte) 0x55, (byte) 0x80,
                              (byte) 0x9B, (byte) 0xC2, (byte) 0xA5, (byte) 0xCB,};


      BigInteger bi_p = new BigInteger(pseudoPrime1);
      BigInteger bi_q = new BigInteger(pseudoPrime2);
      BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
      BigInteger bi_n = bi_p * bi_q;

      for (int count = 0; count < rounds; count++) {
        // generate private and public key
        BigInteger bi_e = bi_pq.genCoPrime(512, rand);
        BigInteger bi_d = bi_e.modInverse(bi_pq);

        Console.Error.WriteLine("\ne =\n" + bi_e.ToString(10));
        Console.Error.WriteLine("\nd =\n" + bi_d.ToString(10));
        Console.Error.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

        // generate data of random length
        int t1 = 0;
        while (t1 == 0)
          t1 = (int) (rand.NextDouble() * 65);

        bool done = false;
        while (!done) {
          for (int i = 0; i < 64; i++) {
            if (i < t1)
              val[i] = (byte) (rand.NextDouble() * 256);
            else
              val[i] = 0;

            if (val[i] != 0)
              done = true;
          }
        }

        while (val[0] == 0)
          val[0] = (byte) (rand.NextDouble() * 256);

        Console.Write("Round = " + count);

        // encrypt and decrypt data
        BigInteger bi_data = new BigInteger(val, t1);
        BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
        BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

        // compare
        if (bi_decrypted != bi_data) {
          Console.Error.WriteLine("\nError at round " + count);
          Console.Error.WriteLine(bi_data + "\n");
          return;
        }
        Console.Error.WriteLine(" <PASSED>.");
      }

    }
Exemplo n.º 2
0
    //***********************************************************************
    // Tests the correct implementation of the modulo exponential function
    // using RSA encryption and decryption (using pre-computed encryption and
    // decryption keys).
    //***********************************************************************

    public static void RSATest(int rounds)
    {
      Random rand = new Random(1);
      byte[] val = new byte[64];

      // private and public key
      BigInteger bi_e =
        new
        BigInteger
        ("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7",
         16);
      BigInteger bi_d =
        new
        BigInteger
        ("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7",
         16);
      BigInteger bi_n =
        new
        BigInteger
        ("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f",
         16);

      Console.Error.WriteLine("e =\n" + bi_e.ToString(10));
      Console.Error.WriteLine("\nd =\n" + bi_d.ToString(10));
      Console.Error.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

      for (int count = 0; count < rounds; count++) {
        // generate data of random length
        int t1 = 0;
        while (t1 == 0)
          t1 = (int) (rand.NextDouble() * 65);

        bool done = false;
        while (!done) {
          for (int i = 0; i < 64; i++) {
            if (i < t1)
              val[i] = (byte) (rand.NextDouble() * 256);
            else
              val[i] = 0;

            if (val[i] != 0)
              done = true;
          }
        }

        while (val[0] == 0)
          val[0] = (byte) (rand.NextDouble() * 256);

        Console.Write("Round = " + count);

        // encrypt and decrypt data
        BigInteger bi_data = new BigInteger(val, t1);
        BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
        BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

        // compare
        if (bi_decrypted != bi_data) {
          Console.Error.WriteLine("\nError at round " + count);
          Console.Error.WriteLine(bi_data + "\n");
          return;
        }
        Console.Error.WriteLine(" <PASSED>.");
      }

    }
Exemplo n.º 3
0
    //***********************************************************************
    // Probabilistic prime test based on Rabin-Miller's
    //
    // for any p > 0 with p - 1 = 2^s * t
    //
    // p is probably prime (strong pseudoprime) if for any a < p,
    // 1) a^t mod p = 1 or
    // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
    //
    // Otherwise, p is composite.
    //
    // Returns
    // -------
    // True if "this" is a strong pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    //***********************************************************************

    public bool RabinMillerTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;


      // calculate values of s and t
      BigInteger p_sub1 = thisVal - (new BigInteger(1));
      int s = 0;

      for (int index = 0; index < p_sub1.dataLength; index++) {
        uint mask = 0x01;

        for (int i = 0; i < 32; i++) {
          if ((p_sub1.data[index] & mask) != 0) {
            index = p_sub1.dataLength;  // to break the outer loop
            break;
          }
          mask <<= 1;
          s++;
        }
      }

      BigInteger t = p_sub1 >> s;

      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        BigInteger b = a.modPow(t, thisVal);

        /*
         * Console.Error.WriteLine("a = " + a.ToString(10));
         * Console.Error.WriteLine("b = " + b.ToString(10));
         * Console.Error.WriteLine("t = " + t.ToString(10));
         * Console.Error.WriteLine("s = " + s);
         */

        bool result = false;

        if (b.dataLength == 1 && b.data[0] == 1)        // a^t mod p = 1
          result = true;

        for (int j = 0; result == false && j < s; j++) {
          if (b == p_sub1)      // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
          {
            result = true;
            break;
          }

          b = (b * b) % thisVal;
        }

        if (result == false)
          return false;
      }
      return true;
    }
Exemplo n.º 4
0
    //***********************************************************************
    // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
    //
    // p is probably prime if for any a < p (a is not multiple of p),
    // a^((p-1)/2) mod p = J(a, p)
    //
    // where J is the Jacobi symbol.
    //
    // Otherwise, p is composite.
    //
    // Returns
    // -------
    // True if "this" is a Euler pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    //***********************************************************************

    public bool SolovayStrassenTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;


      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      BigInteger p_sub1 = thisVal - 1;
      BigInteger p_sub1_shift = p_sub1 >> 1;

      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        // calculate a^((p-1)/2) mod p

        BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
        if (expResult == p_sub1)
          expResult = -1;

        // calculate Jacobi symbol
        BigInteger jacob = Jacobi(a, thisVal);

        //Console.Error.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
        //Console.Error.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

        // if they are different then it is not prime
        if (expResult != jacob)
          return false;
      }

      return true;
    }
Exemplo n.º 5
0
    //***********************************************************************
    // Probabilistic prime test based on Fermat's little theorem
    //
    // for any a < p (p does not divide a) if
    //      a^(p-1) mod p != 1 then p is not prime.
    //
    // Otherwise, p is probably prime (pseudoprime to the chosen base).
    //
    // Returns
    // -------
    // True if "this" is a pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    // Note - this method is fast but fails for Carmichael numbers except
    // when the randomly chosen base is a factor of the number.
    //
    //***********************************************************************

    public bool FermatLittleTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;

      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      BigInteger p_sub1 = thisVal - (new BigInteger(1));
      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        // calculate a^(p-1) mod p
        BigInteger expResult = a.modPow(p_sub1, thisVal);

        int resultLen = expResult.dataLength;

        // is NOT prime is a^(p-1) mod p != 1

        if (resultLen > 1
            || (resultLen == 1 && expResult.data[0] != 1)) {
          //Console.Error.WriteLine("a = " + a.ToString());
          return false;
        }
      }

      return true;
    }