Exemplo n.º 1
0
    //***********************************************************************
    // Generates a random number with the specified number of bits such
    // that gcd(number, this) = 1
    //***********************************************************************

    public BigInteger genCoPrime(int bits, Random rand)
    {
      bool done = false;
      BigInteger result = new BigInteger();

      while (!done) {
        result.genRandomBits(bits, rand);
        //Console.Error.WriteLine(result.ToString(16));

        // gcd test
        BigInteger g = result.gcd(this);
        if (g.dataLength == 1 && g.data[0] == 1)
          done = true;
      }

      return result;
    }
Exemplo n.º 2
0
    private bool LucasStrongTestHelper(BigInteger thisVal)
    {
      // Do the test (selects D based on Selfridge)
      // Let D be the first element of the sequence
      // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
      // Let P = 1, Q = (1-D) / 4

      long D = 5, sign = -1, dCount = 0;
      bool done = false;

      while (!done) {
        int Jresult = BigInteger.Jacobi(D, thisVal);

        if (Jresult == -1)
          done = true;  // J(D, this) = 1
        else {
          if (Jresult == 0 && Math.Abs(D) < thisVal)    // divisor found
            return false;

          if (dCount == 20) {
            // check for square
            BigInteger root = thisVal.sqrt();
            if (root * root == thisVal)
              return false;
          }

          //Console.Error.WriteLine(D);
          D = (Math.Abs(D) + 2) * sign;
          sign = -sign;
        }
        dCount++;
      }

      long Q = (1 - D) >> 2;

      /*
       * Console.Error.WriteLine("D = " + D);
       * Console.Error.WriteLine("Q = " + Q);
       * Console.Error.WriteLine("(n,D) = " + thisVal.gcd(D));
       * Console.Error.WriteLine("(n,Q) = " + thisVal.gcd(Q));
       * Console.Error.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
       */

      BigInteger p_add1 = thisVal + 1;
      int s = 0;

      for (int index = 0; index < p_add1.dataLength; index++) {
        uint mask = 0x01;

        for (int i = 0; i < 32; i++) {
          if ((p_add1.data[index] & mask) != 0) {
            index = p_add1.dataLength;  // to break the outer loop
            break;
          }
          mask <<= 1;
          s++;
        }
      }

      BigInteger t = p_add1 >> s;

      // calculate constant = b^(2k) / m
      // for Barrett Reduction
      BigInteger constant = new BigInteger();

      int nLen = thisVal.dataLength << 1;
      constant.data[nLen] = 0x00000001;
      constant.dataLength = nLen + 1;

      constant = constant / thisVal;

      BigInteger[] lucas =
        LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
      bool isPrime = false;

      if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
          (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) {
        // u(t) = 0 or V(t) = 0
        isPrime = true;
      }

      for (int i = 1; i < s; i++) {
        if (!isPrime) {
          // doubling of index
          lucas[1] =
            thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal,
                                     constant);
          lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

          //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

          if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
            isPrime = true;
        }

        lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);    //Q^k
      }


      if (isPrime) // additional checks for composite numbers
      {
        // If n is prime and gcd(n, Q) == 1, then
        // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

        BigInteger g = thisVal.gcd(Q);
        if (g.dataLength == 1 && g.data[0] == 1)        // gcd(this, Q) == 1
        {
          if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
            lucas[2] += thisVal;

          BigInteger temp =
            (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
          if ((temp.data[maxLength - 1] & 0x80000000) != 0)
            temp += thisVal;

          if (lucas[2] != temp)
            isPrime = false;
        }
      }

      return isPrime;
    }
Exemplo n.º 3
0
    //***********************************************************************
    // Probabilistic prime test based on Rabin-Miller's
    //
    // for any p > 0 with p - 1 = 2^s * t
    //
    // p is probably prime (strong pseudoprime) if for any a < p,
    // 1) a^t mod p = 1 or
    // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
    //
    // Otherwise, p is composite.
    //
    // Returns
    // -------
    // True if "this" is a strong pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    //***********************************************************************

    public bool RabinMillerTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;


      // calculate values of s and t
      BigInteger p_sub1 = thisVal - (new BigInteger(1));
      int s = 0;

      for (int index = 0; index < p_sub1.dataLength; index++) {
        uint mask = 0x01;

        for (int i = 0; i < 32; i++) {
          if ((p_sub1.data[index] & mask) != 0) {
            index = p_sub1.dataLength;  // to break the outer loop
            break;
          }
          mask <<= 1;
          s++;
        }
      }

      BigInteger t = p_sub1 >> s;

      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        BigInteger b = a.modPow(t, thisVal);

        /*
         * Console.Error.WriteLine("a = " + a.ToString(10));
         * Console.Error.WriteLine("b = " + b.ToString(10));
         * Console.Error.WriteLine("t = " + t.ToString(10));
         * Console.Error.WriteLine("s = " + s);
         */

        bool result = false;

        if (b.dataLength == 1 && b.data[0] == 1)        // a^t mod p = 1
          result = true;

        for (int j = 0; result == false && j < s; j++) {
          if (b == p_sub1)      // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
          {
            result = true;
            break;
          }

          b = (b * b) % thisVal;
        }

        if (result == false)
          return false;
      }
      return true;
    }
Exemplo n.º 4
0
    //***********************************************************************
    // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
    //
    // p is probably prime if for any a < p (a is not multiple of p),
    // a^((p-1)/2) mod p = J(a, p)
    //
    // where J is the Jacobi symbol.
    //
    // Otherwise, p is composite.
    //
    // Returns
    // -------
    // True if "this" is a Euler pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    //***********************************************************************

    public bool SolovayStrassenTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;


      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      BigInteger p_sub1 = thisVal - 1;
      BigInteger p_sub1_shift = p_sub1 >> 1;

      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        // calculate a^((p-1)/2) mod p

        BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
        if (expResult == p_sub1)
          expResult = -1;

        // calculate Jacobi symbol
        BigInteger jacob = Jacobi(a, thisVal);

        //Console.Error.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
        //Console.Error.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

        // if they are different then it is not prime
        if (expResult != jacob)
          return false;
      }

      return true;
    }
Exemplo n.º 5
0
    //***********************************************************************
    // Probabilistic prime test based on Fermat's little theorem
    //
    // for any a < p (p does not divide a) if
    //      a^(p-1) mod p != 1 then p is not prime.
    //
    // Otherwise, p is probably prime (pseudoprime to the chosen base).
    //
    // Returns
    // -------
    // True if "this" is a pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    // Note - this method is fast but fails for Carmichael numbers except
    // when the randomly chosen base is a factor of the number.
    //
    //***********************************************************************

    public bool FermatLittleTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;

      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      BigInteger p_sub1 = thisVal - (new BigInteger(1));
      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        // calculate a^(p-1) mod p
        BigInteger expResult = a.modPow(p_sub1, thisVal);

        int resultLen = expResult.dataLength;

        // is NOT prime is a^(p-1) mod p != 1

        if (resultLen > 1
            || (resultLen == 1 && expResult.data[0] != 1)) {
          //Console.Error.WriteLine("a = " + a.ToString());
          return false;
        }
      }

      return true;
    }