Exemplo n.º 1
0
    //***********************************************************************
    // Tests the correct implementation of sqrt() method.
    //***********************************************************************

    public static void SqrtTest(int rounds)
    {
      Random rand = new Random();
      for (int count = 0; count < rounds; count++) {
        // generate data of random length
        int t1 = 0;
        while (t1 == 0)
          t1 = (int) (rand.NextDouble() * 1024);

        Console.Write("Round = " + count);

        BigInteger a = new BigInteger();
        a.genRandomBits(t1, rand);

        BigInteger b = a.sqrt();
        BigInteger c = (b + 1) * (b + 1);

        // check that b is the largest integer such that b*b <= a
        if (c <= a) {
          Console.Error.WriteLine("\nError at round " + count);
          Console.Error.WriteLine(a + "\n");
          return;
        }
        Console.Error.WriteLine(" <PASSED>.");
      }
    }
Exemplo n.º 2
0
    //***********************************************************************
    // Generates a random number with the specified number of bits such
    // that gcd(number, this) = 1
    //***********************************************************************

    public BigInteger genCoPrime(int bits, Random rand)
    {
      bool done = false;
      BigInteger result = new BigInteger();

      while (!done) {
        result.genRandomBits(bits, rand);
        //Console.Error.WriteLine(result.ToString(16));

        // gcd test
        BigInteger g = result.gcd(this);
        if (g.dataLength == 1 && g.data[0] == 1)
          done = true;
      }

      return result;
    }
Exemplo n.º 3
0
    //***********************************************************************
    // Generates a positive BigInteger that is probably prime.
    //***********************************************************************

    public static BigInteger genPseudoPrime(int bits, int confidence,
                                            Random rand)
    {
      BigInteger result = new BigInteger();
      bool done = false;

      while (!done) {
        result.genRandomBits(bits, rand);
        result.data[0] |= 0x01; // make it odd

        // prime test
        done = result.isProbablePrime(confidence);
      }
      return result;
    }
Exemplo n.º 4
0
    //***********************************************************************
    // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
    //
    // p is probably prime if for any a < p (a is not multiple of p),
    // a^((p-1)/2) mod p = J(a, p)
    //
    // where J is the Jacobi symbol.
    //
    // Otherwise, p is composite.
    //
    // Returns
    // -------
    // True if "this" is a Euler pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    //***********************************************************************

    public bool SolovayStrassenTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;


      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      BigInteger p_sub1 = thisVal - 1;
      BigInteger p_sub1_shift = p_sub1 >> 1;

      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        // calculate a^((p-1)/2) mod p

        BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
        if (expResult == p_sub1)
          expResult = -1;

        // calculate Jacobi symbol
        BigInteger jacob = Jacobi(a, thisVal);

        //Console.Error.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
        //Console.Error.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

        // if they are different then it is not prime
        if (expResult != jacob)
          return false;
      }

      return true;
    }
Exemplo n.º 5
0
    //***********************************************************************
    // Probabilistic prime test based on Rabin-Miller's
    //
    // for any p > 0 with p - 1 = 2^s * t
    //
    // p is probably prime (strong pseudoprime) if for any a < p,
    // 1) a^t mod p = 1 or
    // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
    //
    // Otherwise, p is composite.
    //
    // Returns
    // -------
    // True if "this" is a strong pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    //***********************************************************************

    public bool RabinMillerTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;


      // calculate values of s and t
      BigInteger p_sub1 = thisVal - (new BigInteger(1));
      int s = 0;

      for (int index = 0; index < p_sub1.dataLength; index++) {
        uint mask = 0x01;

        for (int i = 0; i < 32; i++) {
          if ((p_sub1.data[index] & mask) != 0) {
            index = p_sub1.dataLength;  // to break the outer loop
            break;
          }
          mask <<= 1;
          s++;
        }
      }

      BigInteger t = p_sub1 >> s;

      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        BigInteger b = a.modPow(t, thisVal);

        /*
         * Console.Error.WriteLine("a = " + a.ToString(10));
         * Console.Error.WriteLine("b = " + b.ToString(10));
         * Console.Error.WriteLine("t = " + t.ToString(10));
         * Console.Error.WriteLine("s = " + s);
         */

        bool result = false;

        if (b.dataLength == 1 && b.data[0] == 1)        // a^t mod p = 1
          result = true;

        for (int j = 0; result == false && j < s; j++) {
          if (b == p_sub1)      // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
          {
            result = true;
            break;
          }

          b = (b * b) % thisVal;
        }

        if (result == false)
          return false;
      }
      return true;
    }
Exemplo n.º 6
0
    //***********************************************************************
    // Probabilistic prime test based on Fermat's little theorem
    //
    // for any a < p (p does not divide a) if
    //      a^(p-1) mod p != 1 then p is not prime.
    //
    // Otherwise, p is probably prime (pseudoprime to the chosen base).
    //
    // Returns
    // -------
    // True if "this" is a pseudoprime to randomly chosen
    // bases.  The number of chosen bases is given by the "confidence"
    // parameter.
    //
    // False if "this" is definitely NOT prime.
    //
    // Note - this method is fast but fails for Carmichael numbers except
    // when the randomly chosen base is a factor of the number.
    //
    //***********************************************************************

    public bool FermatLittleTest(int confidence)
    {
      BigInteger thisVal;
      if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
        thisVal = -this;
      else
        thisVal = this;

      if (thisVal.dataLength == 1) {
        // test small numbers
        if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
          return false;
        else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
          return true;
      }

      if ((thisVal.data[0] & 0x1) == 0) // even numbers
        return false;

      int bits = thisVal.bitCount();
      BigInteger a = new BigInteger();
      BigInteger p_sub1 = thisVal - (new BigInteger(1));
      Random rand = new Random();

      for (int round = 0; round < confidence; round++) {
        bool done = false;

        while (!done)   // generate a < n
        {
          int testBits = 0;

          // make sure "a" has at least 2 bits
          while (testBits < 2)
            testBits = (int) (rand.NextDouble() * bits);

          a.genRandomBits(testBits, rand);

          int byteLen = a.dataLength;

          // make sure "a" is not 0
          if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
            done = true;
        }

        // check whether a factor exists (fix for version 1.03)
        BigInteger gcdTest = a.gcd(thisVal);
        if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
          return false;

        // calculate a^(p-1) mod p
        BigInteger expResult = a.modPow(p_sub1, thisVal);

        int resultLen = expResult.dataLength;

        // is NOT prime is a^(p-1) mod p != 1

        if (resultLen > 1
            || (resultLen == 1 && expResult.data[0] != 1)) {
          //Console.Error.WriteLine("a = " + a.ToString());
          return false;
        }
      }

      return true;
    }