private void btnEstimateSig_Click(object sender, EventArgs e) { double[,] sourceMatrix; double[,] inputs; int[] labels; getData(out sourceMatrix, out inputs, out labels); DoubleRange range; var g = Sigmoid.Estimate(inputs.ToArray(), labels.Length, out range); numSigAlpha.Value = (decimal)g.Alpha; numSigB.Value = (decimal)g.Constant; }
private void buttonEstimate_Click(object sender, EventArgs e) { if (MessageBox.Show(this, "This action will first save the configuration. Do you wish to Continue?", "Save required", MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes) { if (save()) { double[,] sourceMatrix = _model.FeatureTable.ToMatrix <double>(_activeFeatures.ToArray()); double[][] inputs = sourceMatrix.ToArray(); DoubleRange range; if (groupGaussianKernel.Enabled) { Gaussian gaussian = Gaussian.Estimate(inputs, inputs.Length, out range); tbGaussianSigma.Value = (decimal)gaussian.Sigma; } if (groupPolyKernel.Enabled) { } if (groupSigmoidKernel.Enabled) { Sigmoid sigmoid = Sigmoid.Estimate(inputs, inputs.Length, out range); if (sigmoid.Alpha < (double)Decimal.MaxValue && sigmoid.Alpha > (double)Decimal.MinValue) { tbSigmoidAlpha.Value = (decimal)sigmoid.Alpha; } if (sigmoid.Constant < (double)Decimal.MaxValue && sigmoid.Constant > (double)Decimal.MinValue) { tbSigmoidConst.Value = (decimal)sigmoid.Constant; } } if (groupLaplacianKernel.Enabled) { Laplacian laplacian = Laplacian.Estimate(inputs, inputs.Length, out range); tbLaplacianSigma.Value = (decimal)laplacian.Sigma; } } else { MessageBox.Show("Failed to fully save the configuration.\nTherefore configuration properties can not be estimated."); } } }
private void setKernalType(KernelType k) { switch (k) { case KernelType.Linear: kernel = new Linear(); break; case KernelType.Quadratic: kernel = new Quadratic(); break; case KernelType.Sigmoid: kernel = Sigmoid.Estimate(independentVls); break; case KernelType.Spline: kernel = new Spline(); break; case KernelType.ChiSquared: kernel = new ChiSquare(); break; case KernelType.Gaussian: kernel = Gaussian.Estimate(independentVls); break; case KernelType.Multiquadric: kernel = new Multiquadric(); break; case KernelType.InverseMultquadric: kernel = new InverseMultiquadric(); break; case KernelType.Laplacian: kernel = Laplacian.Estimate(independentVls); break; default: kernel = new Polynomial(2); break; } }
private void btnEstimateSig_Click(object sender, EventArgs e) { // Get only the input vector values (in the first two columns) double[][] inputs = ConvertDataTableToMatrix(TrainingData.Tables["InterestedTrainingDataValues"]); DoubleRange range; // valid range will be returned as an out parameter var sigmoid = Sigmoid.Estimate(inputs, inputs.Length, out range); if (sigmoid.Alpha < (double)Decimal.MaxValue && sigmoid.Alpha > (double)Decimal.MinValue) { numSigAlpha.Value = (decimal)sigmoid.Alpha; } if (sigmoid.Constant < (double)Decimal.MaxValue && sigmoid.Constant > (double)Decimal.MinValue) { numSigB.Value = (decimal)sigmoid.Constant; } }
private void btnEstimateSigmoid_Click(object sender, EventArgs e) { DataTable source = dgvLearningSource.DataSource as DataTable; // Creates a matrix from the source data table double[,] sourceMatrix = source.ToMatrix(out columnNames); // Get only the input vector values (in the first two columns) double[][] inputs = sourceMatrix.GetColumns(0, 1).ToArray(); DoubleRange range; // valid range will be returned as an out parameter var sigmoid = Sigmoid.Estimate(inputs, inputs.Length, out range); if (sigmoid.Alpha < (double)Decimal.MaxValue && sigmoid.Alpha > (double)Decimal.MinValue) { numSigAlpha.Value = (decimal)sigmoid.Alpha; } if (sigmoid.Constant < (double)Decimal.MaxValue && sigmoid.Constant > (double)Decimal.MinValue) { numSigB.Value = (decimal)sigmoid.Constant; } }