public override double Test(IList <IList <double> > samples) { double total_count = ToolsCollection.CountElements(samples); double pooled_mean = ToolsMathStatistics.MeanAll(samples); double nominator_part = 0.0; double denominator_part = 0.0; for (int sample_index = 0; sample_index < samples.Count; sample_index++) { double sample_mean = ToolsMathStatistics.Mean(samples[sample_index]); double sample_median = ToolsMathStatistics.Quantile(samples[sample_index], 0.5f); nominator_part += (sample_mean - pooled_mean) * (sample_mean - pooled_mean) * samples[sample_index].Count; for (int measurement_index = 0; measurement_index < samples[sample_index].Count; measurement_index++) { double diff = Math.Abs(sample_median - samples[sample_index][measurement_index]) - sample_mean; //This is the difference with brown forsythe test denominator_part += diff * diff; } } double degrees_of_freedom_0 = samples.Count - 1; double degrees_of_freedom_1 = total_count - samples.Count; double f_statistic = (degrees_of_freedom_1 * nominator_part) / (degrees_of_freedom_0 * denominator_part); FisherSnedecor distribution = new FisherSnedecor(degrees_of_freedom_0, degrees_of_freedom_1, new Random()); return(distribution.CumulativeDistribution(f_statistic)); }
public void ValidateCumulativeDistribution(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); double expected = SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * x / (d2 + (x * d1))); Assert.That(n.CumulativeDistribution(x), Is.EqualTo(expected)); Assert.That(FisherSnedecor.CDF(d1, d2, x), Is.EqualTo(expected)); }
public void ValidateCumulativeDistribution( [Values(0.1, 1.0, 10.0, 0.1, 1.0, 10.0, 0.1, 1.0, 10.0, 0.1, 1.0, 10.0)] double d1, [Values(0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0)] double d2, [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)] double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual(SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * x / (d2 + (x * d1))), n.CumulativeDistribution(x)); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/F-distribution">FisherSnedecor distribution</a> public void Run() { // 1. Initialize the new instance of the FisherSnedecor distribution class with parameter DegreeOfFreedom1 = 50, DegreeOfFreedom2 = 20. var fisherSnedecor = new FisherSnedecor(50, 20); Console.WriteLine(@"1. Initialize the new instance of the FisherSnedecor distribution class with parameters DegreeOfFreedom1 = {0}, DegreeOfFreedom2 = {1}", fisherSnedecor.DegreeOfFreedom1, fisherSnedecor.DegreeOfFreedom2); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", fisherSnedecor); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", fisherSnedecor.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", fisherSnedecor.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", fisherSnedecor.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", fisherSnedecor.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", fisherSnedecor.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", fisherSnedecor.Mean.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", fisherSnedecor.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", fisherSnedecor.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", fisherSnedecor.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", fisherSnedecor.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples of the FisherSnedecor distribution Console.WriteLine(@"3. Generate 10 samples of the FisherSnedecor distribution"); for (var i = 0; i < 10; i++) { Console.Write(fisherSnedecor.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the FisherSnedecor(50, 20) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the FisherSnedecor(50, 20) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = fisherSnedecor.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the FisherSnedecor(20, 10) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the FisherSnedecor(20, 10) distribution and display histogram"); fisherSnedecor.DegreeOfFreedom1 = 20; fisherSnedecor.DegreeOfFreedom2 = 10; for (var i = 0; i < data.Length; i++) { data[i] = fisherSnedecor.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the FisherSnedecor(100, 100) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the FisherSnedecor(100, 100) distribution and display histogram"); fisherSnedecor.DegreeOfFreedom1 = 100; fisherSnedecor.DegreeOfFreedom2 = 100; for (var i = 0; i < data.Length; i++) { data[i] = fisherSnedecor.Sample(); } ConsoleHelper.DisplayHistogram(data); }
public void ValidateCumulativeDistribution(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual <double>(SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * x / (d2 + x * d1)), n.CumulativeDistribution(x)); }
public void ValidateCumulativeDistribution(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual<double>(SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * d2 / (d1 + d1 * d2)), n.CumulativeDistribution(x)); }