Esempio n. 1
0
        public override double Test(IList <IList <double> > samples)
        {
            double total_count      = ToolsCollection.CountElements(samples);
            double pooled_mean      = ToolsMathStatistics.MeanAll(samples);
            double nominator_part   = 0.0;
            double denominator_part = 0.0;

            for (int sample_index = 0; sample_index < samples.Count; sample_index++)
            {
                double sample_mean   = ToolsMathStatistics.Mean(samples[sample_index]);
                double sample_median = ToolsMathStatistics.Quantile(samples[sample_index], 0.5f);
                nominator_part += (sample_mean - pooled_mean) * (sample_mean - pooled_mean) * samples[sample_index].Count;

                for (int measurement_index = 0; measurement_index < samples[sample_index].Count; measurement_index++)
                {
                    double diff = Math.Abs(sample_median - samples[sample_index][measurement_index]) - sample_mean; //This is the difference with brown forsythe test
                    denominator_part += diff * diff;
                }
            }

            double         degrees_of_freedom_0 = samples.Count - 1;
            double         degrees_of_freedom_1 = total_count - samples.Count;
            double         f_statistic          = (degrees_of_freedom_1 * nominator_part) / (degrees_of_freedom_0 * denominator_part);
            FisherSnedecor distribution         = new FisherSnedecor(degrees_of_freedom_0, degrees_of_freedom_1, new Random());

            return(distribution.CumulativeDistribution(f_statistic));
        }
        public void ValidateCumulativeDistribution(double d1, double d2, double x)
        {
            var    n        = new FisherSnedecor(d1, d2);
            double expected = SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * x / (d2 + (x * d1)));

            Assert.That(n.CumulativeDistribution(x), Is.EqualTo(expected));
            Assert.That(FisherSnedecor.CDF(d1, d2, x), Is.EqualTo(expected));
        }
Esempio n. 3
0
        public void ValidateCumulativeDistribution(
            [Values(0.1, 1.0, 10.0, 0.1, 1.0, 10.0, 0.1, 1.0, 10.0, 0.1, 1.0, 10.0)] double d1,
            [Values(0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0)] double d2,
            [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)] double x)
        {
            var n = new FisherSnedecor(d1, d2);

            Assert.AreEqual(SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * x / (d2 + (x * d1))), n.CumulativeDistribution(x));
        }
 public void ValidateCumulativeDistribution(
     [Values(0.1, 1.0, 10.0, 0.1, 1.0, 10.0, 0.1, 1.0, 10.0, 0.1, 1.0, 10.0)] double d1, 
     [Values(0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0)] double d2, 
     [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)] double x)
 {
     var n = new FisherSnedecor(d1, d2);
     Assert.AreEqual(SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * x / (d2 + (x * d1))), n.CumulativeDistribution(x));
 }
Esempio n. 5
0
        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="http://en.wikipedia.org/wiki/F-distribution">FisherSnedecor distribution</a>
        public void Run()
        {
            // 1. Initialize the new instance of the FisherSnedecor distribution class with parameter DegreeOfFreedom1 = 50, DegreeOfFreedom2 = 20.
            var fisherSnedecor = new FisherSnedecor(50, 20);

            Console.WriteLine(@"1. Initialize the new instance of the FisherSnedecor distribution class with parameters DegreeOfFreedom1 = {0}, DegreeOfFreedom2 = {1}", fisherSnedecor.DegreeOfFreedom1, fisherSnedecor.DegreeOfFreedom2);
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", fisherSnedecor);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", fisherSnedecor.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability density at location '0.3'", fisherSnedecor.Density(0.3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability density at location '0.3'", fisherSnedecor.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", fisherSnedecor.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", fisherSnedecor.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", fisherSnedecor.Mean.ToString(" #0.00000;-#0.00000"));

            // Mode
            Console.WriteLine(@"{0} - Mode", fisherSnedecor.Mode.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", fisherSnedecor.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", fisherSnedecor.StdDev.ToString(" #0.00000;-#0.00000"));

            // Skewness
            Console.WriteLine(@"{0} - Skewness", fisherSnedecor.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();

            // 3. Generate 10 samples of the FisherSnedecor distribution
            Console.WriteLine(@"3. Generate 10 samples of the FisherSnedecor distribution");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(fisherSnedecor.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Generate 100000 samples of the FisherSnedecor(50, 20) distribution and display histogram
            Console.WriteLine(@"4. Generate 100000 samples of the FisherSnedecor(50, 20) distribution and display histogram");
            var data = new double[100000];

            for (var i = 0; i < data.Length; i++)
            {
                data[i] = fisherSnedecor.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 5. Generate 100000 samples of the FisherSnedecor(20, 10) distribution and display histogram
            Console.WriteLine(@"5. Generate 100000 samples of the FisherSnedecor(20, 10) distribution and display histogram");
            fisherSnedecor.DegreeOfFreedom1 = 20;
            fisherSnedecor.DegreeOfFreedom2 = 10;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = fisherSnedecor.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 6. Generate 100000 samples of the FisherSnedecor(100, 100) distribution and display histogram
            Console.WriteLine(@"6. Generate 100000 samples of the FisherSnedecor(100, 100) distribution and display histogram");
            fisherSnedecor.DegreeOfFreedom1 = 100;
            fisherSnedecor.DegreeOfFreedom2 = 100;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = fisherSnedecor.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
        }
Esempio n. 6
0
        public void ValidateCumulativeDistribution(double d1, double d2, double x)
        {
            var n = new FisherSnedecor(d1, d2);

            Assert.AreEqual <double>(SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * x / (d2 + x * d1)), n.CumulativeDistribution(x));
        }
 public void ValidateCumulativeDistribution(double d1, double d2, double x)
 {
     var n = new FisherSnedecor(d1, d2);
     Assert.AreEqual<double>(SpecialFunctions.BetaRegularized(d1 / 2.0, d2 / 2.0, d1 * d2 / (d1 + d1 * d2)), n.CumulativeDistribution(x));
 }