public void ValidateDensity(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); double expected = Math.Sqrt(Math.Pow(d1 * x, d1) * Math.Pow(d2, d2) / Math.Pow((d1 * x) + d2, d1 + d2)) / (x * SpecialFunctions.Beta(d1 / 2.0, d2 / 2.0)); Assert.AreEqual(expected, n.Density(x)); Assert.AreEqual(expected, FisherSnedecor.PDF(d1, d2, x)); }
public void ValidateDensityLn( [Values(0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0)] double d1, [Values(0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0, 100.0, 100.0, 100.0, 100.0, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0, 100.0, 100.0, 100.0, 100.0)] double d2, [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)] double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual(Math.Log(n.Density(x)), n.DensityLn(x)); }
public void ValidateDensity( [Values(0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0, 0.1, 1.0, 10.0, 100.0)] double d1, [Values(0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0, 100.0, 100.0, 100.0, 100.0, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0, 1.0, 100.0, 100.0, 100.0, 100.0)] double d2, [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)] double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual(Math.Sqrt(Math.Pow(d1 * x, d1) * Math.Pow(d2, d2) / Math.Pow((d1 * x) + d2, d1 + d2)) / (x * SpecialFunctions.Beta(d1 / 2.0, d2 / 2.0)), n.Density(x)); }
/// <summary> /// Run example /// </summary> /// <a href="http://en.wikipedia.org/wiki/F-distribution">FisherSnedecor distribution</a> public void Run() { // 1. Initialize the new instance of the FisherSnedecor distribution class with parameter DegreeOfFreedom1 = 50, DegreeOfFreedom2 = 20. var fisherSnedecor = new FisherSnedecor(50, 20); Console.WriteLine(@"1. Initialize the new instance of the FisherSnedecor distribution class with parameters DegreeOfFreedom1 = {0}, DegreeOfFreedom2 = {1}", fisherSnedecor.DegreeOfFreedom1, fisherSnedecor.DegreeOfFreedom2); Console.WriteLine(); // 2. Distributuion properties: Console.WriteLine(@"2. {0} distributuion properties:", fisherSnedecor); // Cumulative distribution function Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", fisherSnedecor.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000")); // Probability density Console.WriteLine(@"{0} - Probability density at location '0.3'", fisherSnedecor.Density(0.3).ToString(" #0.00000;-#0.00000")); // Log probability density Console.WriteLine(@"{0} - Log probability density at location '0.3'", fisherSnedecor.DensityLn(0.3).ToString(" #0.00000;-#0.00000")); // Largest element in the domain Console.WriteLine(@"{0} - Largest element in the domain", fisherSnedecor.Maximum.ToString(" #0.00000;-#0.00000")); // Smallest element in the domain Console.WriteLine(@"{0} - Smallest element in the domain", fisherSnedecor.Minimum.ToString(" #0.00000;-#0.00000")); // Mean Console.WriteLine(@"{0} - Mean", fisherSnedecor.Mean.ToString(" #0.00000;-#0.00000")); // Mode Console.WriteLine(@"{0} - Mode", fisherSnedecor.Mode.ToString(" #0.00000;-#0.00000")); // Variance Console.WriteLine(@"{0} - Variance", fisherSnedecor.Variance.ToString(" #0.00000;-#0.00000")); // Standard deviation Console.WriteLine(@"{0} - Standard deviation", fisherSnedecor.StdDev.ToString(" #0.00000;-#0.00000")); // Skewness Console.WriteLine(@"{0} - Skewness", fisherSnedecor.Skewness.ToString(" #0.00000;-#0.00000")); Console.WriteLine(); // 3. Generate 10 samples of the FisherSnedecor distribution Console.WriteLine(@"3. Generate 10 samples of the FisherSnedecor distribution"); for (var i = 0; i < 10; i++) { Console.Write(fisherSnedecor.Sample().ToString("N05") + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Generate 100000 samples of the FisherSnedecor(50, 20) distribution and display histogram Console.WriteLine(@"4. Generate 100000 samples of the FisherSnedecor(50, 20) distribution and display histogram"); var data = new double[100000]; for (var i = 0; i < data.Length; i++) { data[i] = fisherSnedecor.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 5. Generate 100000 samples of the FisherSnedecor(20, 10) distribution and display histogram Console.WriteLine(@"5. Generate 100000 samples of the FisherSnedecor(20, 10) distribution and display histogram"); fisherSnedecor.DegreeOfFreedom1 = 20; fisherSnedecor.DegreeOfFreedom2 = 10; for (var i = 0; i < data.Length; i++) { data[i] = fisherSnedecor.Sample(); } ConsoleHelper.DisplayHistogram(data); Console.WriteLine(); // 6. Generate 100000 samples of the FisherSnedecor(100, 100) distribution and display histogram Console.WriteLine(@"6. Generate 100000 samples of the FisherSnedecor(100, 100) distribution and display histogram"); fisherSnedecor.DegreeOfFreedom1 = 100; fisherSnedecor.DegreeOfFreedom2 = 100; for (var i = 0; i < data.Length; i++) { data[i] = fisherSnedecor.Sample(); } ConsoleHelper.DisplayHistogram(data); }
public void ValidateDensityLn(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual <double>(Math.Log(n.Density(x)), n.DensityLn(x)); }
public void ValidateDensity(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual <double>(Math.Sqrt(Math.Pow(d1 * x, d1) * Math.Pow(d2, d2) / (Math.Pow(d1 * x + d2, d1 + d2))) / (x * SpecialFunctions.Beta(d1 / 2.0, d2 / 2.0)), n.Density(x)); }
public void ValidateDensityLn(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual(Math.Log(n.Density(x)), n.DensityLn(x)); }
public void ValidateDensity(double d1, double d2, double x) { var n = new FisherSnedecor(d1, d2); Assert.AreEqual<double>(Math.Sqrt(Math.Pow(d1 * x, d1) * Math.Pow(d2, d2) / (Math.Pow(d1 * x + d2, d1 + d2))) / (x * SpecialFunctions.Beta(d1 / 2.0, d2 / 2.0)), n.Density(x)); }