コード例 #1
0
        // Observations are never used.
//        public IEnumerable<StepOutput<GPSFilter2DSample>> Filter(IEnumerable<GPSObservation> samples, IEnumerable<GPSFilter2DInput> inputs)
//        {
//            return samples.Select(s => Filter(s, i));
//        }

        private StepOutput <Matrix> CalculateNext(StepInput <Matrix> prev, GPSObservation observation,
                                                  GPSFilter2DInput input)
        {
            TimeSpan time      = observation.Time;
            TimeSpan timeDelta = time - _prevEstimate.Time;

            UpdateMatrices(time, timeDelta);

            Matrix u = ToInputMatrix(input);

            // Ref equations: http://en.wikipedia.org/wiki/Kalman_filter#The_Kalman_filter
            // Calculate the state and the output
            Matrix x = A * prev.X + B * u + w;
            Matrix z = H * x + v; //ToOutputMatrix(observation) + v;//H * x + v;

            // Predictor equations
            Matrix PriX         = A * prev.PostX + B * u;  // n by 1
            Matrix AT           = Matrix.Transpose(A);
            Matrix PriP         = A * prev.PostP * AT + Q; // n by n
            Matrix residual     = z - H * PriX;
            Matrix residualP    = H * PriP * Matrix.Transpose(H) + R;
            Matrix residualPInv = residualP.Inverse();

            // Corrector equations
            Matrix K = PriP * Matrix.Transpose(H) * residualPInv; // n by m

            // TODO Temp, experimenting with skipping measurements
            //            compileerror
            //            k[PositionY, PositionY] = 1.0;
            //            k[VelocityY, VelocityY] = 1.0;
            //            k[AccelerationY, AccelerationY] = 1.0;


            Matrix PostX = PriX + K * residual; // n by 1
            Matrix PostP = (I - K * H) * PriP;  // n by n


            return(new StepOutput <Matrix>
            {
                K = K,
                PriX = PriX,
                PriP = PriP,
                PostX = PostX,
                PostP = PostP,
                PostXError = PostX - x,
                PriXError = PriX - x,
                X = x,
                Z = z,
                W = w,
                V = v,
                Time = time,
            });
        }
コード例 #2
0
        /// <summary>
        /// Perform a discrete time prediction of the system state.
        /// </summary>
        /// <param name="F">State transition matrix.</param>
        /// <param name="G">Noise coupling matrix.</param>
        /// <param name="Q">Plant noise covariance.</param>
        /// <exception cref="System.ArgumentException">Thrown when the column and row
        /// counts for the given matrices are incorrect.</exception>
        /// <remarks>
        /// Performs a prediction of the next state of the Kalman Filter, given
        /// a description of the dynamic equations of the system, the covariance of
        /// the plant noise affecting the system and the equations that describe
        /// the effect on the system of that plant noise.
        /// </remarks>
        public void Predict(Matrix<double> F, Matrix<double> G, Matrix<double> Q)
        {
            // Some matrices we will need a bit
            Matrix<double> FI = F.Inverse();
            Matrix<double> FIT = FI.Transpose();
            Matrix<double> GT = G.Transpose();
            Matrix<double> A = FIT*J*FI;
            Matrix<double> B = A*G*(GT*A*G + Q.Inverse()).Inverse();

            J = (I - B*GT)*A;
            y = (I - B*GT)*FIT*y;
        }
コード例 #3
0
        /// <summary>
        /// Updates the state of the system based on the given noisy measurements,
        /// a description of how those measurements relate to the system, and a
        /// covariance <c>Matrix</c> to describe the noise of the system.
        /// </summary>
        /// <param name="z">The measurements of the system.</param>
        /// <param name="H">Measurement model.</param>
        /// <param name="R">Covariance of measurements.</param>
        /// <exception cref="System.ArgumentException">Thrown when given matrices
        /// are of the incorrect size.</exception>
        public void Update(Matrix<double> z, Matrix<double> H, Matrix<double> R)
        {
            KalmanFilter.CheckUpdateParameters(z, H, R, this);

            // Fiddle with the matrices
            Matrix<double> HT = H.Transpose();
            Matrix<double> RI = R.Inverse();

            // Perform the update
            y = y + (HT*RI*z);
            J = J + (HT*RI*H);
        }
コード例 #4
0
        void Update(double z, Matrix<double> H, double R)
        {
            Matrix<double> a = U.Transpose()*H.Transpose();
            Matrix<double> b = D*a;
            double dz = z - (H*x)[0, 0];
            double alpha = R;
            double gamma = 1d/alpha;

            for (int j = 0; j < x.RowCount; j++)
            {
                double beta = alpha;
                alpha = alpha + (a[j, 0]*b[j, 0]);
                double lambda = -a[j, 0]*gamma;
                gamma = 1d/alpha;
                D[j, j] = beta*gamma*D[j, j];

                for (int i = 0; i < j; i++)
                {
                    beta = U[i, j];
                    U[i, j] = beta + (b[i, 0]*lambda);
                    b[i, 0] = b[i, 0] + (b[j, 0]*beta);
                }
            }

            double dzs = gamma*dz;
            x = x + (dzs*b);
        }
コード例 #5
0
        /// <summary>
        /// Perform a discrete time prediction of the system state.
        /// </summary>
        /// <param name="F">State transition matrix.</param>
        /// <exception cref="System.ArgumentException">Thrown when the given state
        /// transition matrix does not have the same number of row/columns as there
        /// are variables in the state vector.</exception>
        public void Predict(Matrix<double> F)
        {
            KalmanFilter.CheckPredictParameters(F, this);

            // Easier just to convert back to discrete form....
            Matrix<double> p = J.Inverse();
            Matrix<double> x = p*y;

            x = F*x;
            p = F*p*F.Transpose();

            J = p.Inverse();
            y = J*x;
        }
コード例 #6
0
        private void UpdateTimeVaryingMatrices(TimeSpan timeDelta)
        {
            double dt = timeDelta.TotalSeconds;

            double posByV = dt;            // p=vt
            double posByA = 0.5 * dt * dt; // p=0.5at^2
            double velByA = dt;            // v=at

            // World state transition matrix.
            // Update position and velocity from previous state.
            // Previous state acceleration is neglected since current acceleration only depends on current input.
            A = Matrix.Create(new double[n, n]
            {
                // Px Py Pz Vx Vy Vz Qx Qy Qz Qw
                { 1, 0, 0, posByV, 0, 0, 0, 0, 0, 0 },                // Px
                { 0, 1, 0, 0, posByV, 0, 0, 0, 0, 0 },                // Py
                { 0, 0, 1, 0, 0, posByV, 0, 0, 0, 0 },                // Pz
                { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },                     // Vx
                { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 },                     // Vy
                { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 },                     // Vz

                // We don't handle transition of quaternions here due to difficulties. Using B instead.
                { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },                     // Quaternion X
                { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },                     // Quaternion Y
                { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },                     // Quaternion Z
                { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },                     // Quaternion W
            });
            AT = Matrix.Transpose(A);


            // Input gain matrix.
            // Acceleration forward/right/down
            // Angular Rate Roll/Pitch/Heading
            B = Matrix.Create(new double[n, p]
            {
                // Ax Ay Az Qx Qy Qz Qw
                { posByA, 0, 0, 0, 0, 0, 0 },                     // Px
                { 0, posByA, 0, 0, 0, 0, 0 },                     // Py
                { 0, 0, posByA, 0, 0, 0, 0 },                     // Pz
                { velByA, 0, 0, 0, 0, 0, 0 },                     // Vx
                { 0, velByA, 0, 0, 0, 0, 0 },                     // Vy
                { 0, 0, velByA, 0, 0, 0, 0 },                     // Vz

                // Simply set new orientation directly by quaternion input
                { 0, 0, 0, 1, 0, 0, 0 },                     // Quaternion X
                { 0, 0, 0, 0, 1, 0, 0 },                     // Quaternion Y
                { 0, 0, 0, 0, 0, 1, 0 },                     // Quaternion Z
                { 0, 0, 0, 0, 0, 0, 1 },                     // Quaternion W
            });


            // TODO For simplicity we assume all acceleromter axes have identical standard deviations (although they don't)
            float accelStdDev    = _sensorSpecifications.AccelerometerStdDev.Forward;
            float velocityStdDev = ((float)velByA) * accelStdDev;
            float positionStdDev = ((float)posByA) * accelStdDev;

            // Diagonal matrix with noise std dev
            Q = Matrix.Diagonal(new Vector(new double[n]
            {
                positionStdDev, positionStdDev, positionStdDev,
                velocityStdDev, velocityStdDev, velocityStdDev,
                0, 0, 0, 0                                      // TODO Orientation has no noise, should be added later
            }));

            R  = Matrix.Diagonal(_stdDevV); // Diagonal matrix with noise std dev
            Q *= Matrix.Transpose(Q);       // Convert standard deviations to variances
            R *= Matrix.Transpose(R);       // Convert standard deviations to variances

            w = GetNoiseMatrix(_stdDevW, n);
            v = GetNoiseMatrix(_stdDevV, m);
        }
コード例 #7
0
        private StepOutput <Matrix> CalculateNext(StepInput <Matrix> prev, GPSINSObservation observation,
                                                  GPSINSInput input)
        {
            TimeSpan time      = observation.Time;
            TimeSpan timeDelta = time - _prevEstimate.Time;

            // Note: Use 0.0 and not 0 in order to use the correct constructor!
            // If no GPS update is available, then use a zero matrix to ignore the values in the observation.
            H = observation.GotGPSUpdate
                    ? Matrix.Identity(m, n)
                    : new Matrix(m, n, 0.0);
            HT = Matrix.Transpose(H);

            UpdateTimeVaryingMatrices(timeDelta);

            Matrix u = ToInputMatrix(input, time);

            // Ref equations: http://en.wikipedia.org/wiki/Kalman_filter#The_Kalman_filter
            // Calculate the state and the output
            Matrix x = A * prev.X + B * u;               // +w; noise is already modelled in input data
            Matrix z = ToObservationMatrix(observation); //H * x + v;// m by 1

            // Predictor equations
            Matrix PriX      = A * prev.PostX + B * u;  // n by 1
            Matrix PriP      = A * prev.PostP * AT + Q; // n by n
            Matrix residual  = z - H * PriX;            // m by 1
            Matrix residualP = H * PriP * HT + R;       // m by m

            // If residualP is zero matrix then set its inverse to zero as well.
            // This occurs if all observation standard deviations are zero
            // and this workaround will cause the Kalman gain to trust the process model entirely.
            Matrix residualPInv = Matrix.AlmostEqual(residualP, _zeroMM) // m by m
                ? _zeroMM
                : residualP.Inverse();

            // Corrector equations
            Matrix K     = PriP * Matrix.Transpose(H) * residualPInv; // n by m
            Matrix PostX = PriX + K * residual;                       // n by 1
            Matrix PostP = (I - K * H) * PriP;                        // n by n



            var tmpPosition = new Vector3((float)PostX[0, 0], (float)PostX[1, 0], (float)PostX[2, 0]);
//            var tmpPrevPosition = new Vector3((float)prev.PostX[0, 0], (float)prev.PostX[1, 0], (float)prev.PostX[2, 0]);
//            Vector3 positionChange = tmpPosition - tmpPrevPosition;
            Vector3 gpsPositionTrust = new Vector3((float)K[0, 0], (float)K[1, 1], (float)K[2, 2]);
            Vector3 gpsVelocityTrust = new Vector3((float)K[3, 3], (float)K[4, 4], (float)K[5, 5]);
//
//            Matrix tmpPriPGain = A*Matrix.Identity(10,10)*AT + Q;

            var tmpVelocity = new Vector3((float)x[3, 0], (float)x[4, 0], (float)x[5, 0]);
            var tmpAccel    = new Vector3((float)x[6, 0], (float)x[7, 0], (float)x[8, 0]);

            return(new StepOutput <Matrix>
            {
                K = K,
                PriX = PriX,
                PriP = PriP,
                PostX = PostX,
                PostP = PostP,
                PostXError = PostX - x,
                PriXError = PriX - x,
                X = x,
                Z = z,
                W = w,
                V = v,
                Time = time,
            });
        }
コード例 #8
0
        SingularValueDecomposition(IMatrix <double> arg)
        {
            _transpose = (arg.RowCount < arg.ColumnCount);

            // Derived from LINPACK code.
            // Initialize.
            double[][] a;
            if (_transpose)
            {
                // copy of internal data, independent of Arg
                a  = Matrix.Transpose(arg).GetArray();
                _m = arg.ColumnCount;
                _n = arg.RowCount;
            }
            else
            {
                a  = arg.CopyToJaggedArray();
                _m = arg.RowCount;
                _n = arg.ColumnCount;
            }

            int nu = Math.Min(_m, _n);

            double[]   s = new double[Math.Min(_m + 1, _n)];
            double[][] u = Matrix.CreateMatrixData(_m, nu);
            double[][] v = Matrix.CreateMatrixData(_n, _n);

            double[] e    = new double[_n];
            double[] work = new double[_m];

            /*
             * Reduce A to bidiagonal form, storing the diagonal elements
             * in s and the super-diagonal elements in e.
             */

            int nct = Math.Min(_m - 1, _n);
            int nrt = Math.Max(0, Math.Min(_n - 2, _m));

            for (int k = 0; k < Math.Max(nct, nrt); k++)
            {
                if (k < nct)
                {
                    // Compute the transformation for the k-th column and
                    // place the k-th diagonal in s[k].
                    // Compute 2-norm of k-th column without under/overflow.
                    s[k] = 0;

                    for (int i = k; i < _m; i++)
                    {
                        s[k] = Fn.Hypot(s[k], a[i][k]);
                    }

                    if (s[k] != 0.0)
                    {
                        if (a[k][k] < 0.0)
                        {
                            s[k] = -s[k];
                        }

                        for (int i = k; i < _m; i++)
                        {
                            a[i][k] /= s[k];
                        }

                        a[k][k] += 1.0;
                    }

                    s[k] = -s[k];
                }

                for (int j = k + 1; j < _n; j++)
                {
                    if ((k < nct) & (s[k] != 0.0))
                    {
                        /* Apply the transformation */

                        double t = 0;
                        for (int i = k; i < _m; i++)
                        {
                            t += a[i][k] * a[i][j];
                        }

                        t = (-t) / a[k][k];
                        for (int i = k; i < _m; i++)
                        {
                            a[i][j] += t * a[i][k];
                        }
                    }

                    /*
                     * Place the k-th row of A into e for the
                     * subsequent calculation of the row transformation.
                     */

                    e[j] = a[k][j];
                }

                if (k < nct)
                {
                    /*
                     * Place the transformation in U for subsequent back
                     * multiplication.
                     */

                    for (int i = k; i < _m; i++)
                    {
                        u[i][k] = a[i][k];
                    }
                }

                if (k < nrt)
                {
                    // Compute the k-th row transformation and place the
                    // k-th super-diagonal in e[k].
                    // Compute 2-norm without under/overflow.
                    e[k] = 0;

                    for (int i = k + 1; i < _n; i++)
                    {
                        e[k] = Fn.Hypot(e[k], e[i]);
                    }

                    if (e[k] != 0.0)
                    {
                        if (e[k + 1] < 0.0)
                        {
                            e[k] = -e[k];
                        }

                        for (int i = k + 1; i < _n; i++)
                        {
                            e[i] /= e[k];
                        }

                        e[k + 1] += 1.0;
                    }

                    e[k] = -e[k];

                    if ((k + 1 < _m) & (e[k] != 0.0))
                    {
                        /* Apply the transformation */

                        for (int i = k + 1; i < _m; i++)
                        {
                            work[i] = 0.0;
                        }

                        for (int j = k + 1; j < _n; j++)
                        {
                            for (int i = k + 1; i < _m; i++)
                            {
                                work[i] += e[j] * a[i][j];
                            }
                        }

                        for (int j = k + 1; j < _n; j++)
                        {
                            double t = (-e[j]) / e[k + 1];
                            for (int i = k + 1; i < _m; i++)
                            {
                                a[i][j] += t * work[i];
                            }
                        }
                    }

                    /*
                     * Place the transformation in V for subsequent
                     * back multiplication.
                     */

                    for (int i = k + 1; i < _n; i++)
                    {
                        v[i][k] = e[i];
                    }
                }
            }

            /* Set up the final bidiagonal matrix or order p. */

            int p = Math.Min(_n, _m + 1);

            if (nct < _n)
            {
                s[nct] = a[nct][nct];
            }

            if (_m < p)
            {
                s[p - 1] = 0.0;
            }

            if (nrt + 1 < p)
            {
                e[nrt] = a[nrt][p - 1];
            }

            e[p - 1] = 0.0;

            /* If required, generate U */

            for (int j = nct; j < nu; j++)
            {
                for (int i = 0; i < _m; i++)
                {
                    u[i][j] = 0.0;
                }

                u[j][j] = 1.0;
            }

            for (int k = nct - 1; k >= 0; k--)
            {
                if (s[k] != 0.0)
                {
                    for (int j = k + 1; j < nu; j++)
                    {
                        double t = 0;
                        for (int i = k; i < _m; i++)
                        {
                            t += u[i][k] * u[i][j];
                        }

                        t = (-t) / u[k][k];
                        for (int i = k; i < _m; i++)
                        {
                            u[i][j] += t * u[i][k];
                        }
                    }

                    for (int i = k; i < _m; i++)
                    {
                        u[i][k] = -u[i][k];
                    }

                    u[k][k] = 1.0 + u[k][k];
                    for (int i = 0; i < k - 1; i++)
                    {
                        u[i][k] = 0.0;
                    }
                }
                else
                {
                    for (int i = 0; i < _m; i++)
                    {
                        u[i][k] = 0.0;
                    }

                    u[k][k] = 1.0;
                }
            }

            /* If required, generate V */

            for (int k = _n - 1; k >= 0; k--)
            {
                if ((k < nrt) & (e[k] != 0.0))
                {
                    for (int j = k + 1; j < nu; j++)
                    {
                        double t = 0;
                        for (int i = k + 1; i < _n; i++)
                        {
                            t += v[i][k] * v[i][j];
                        }

                        t = (-t) / v[k + 1][k];
                        for (int i = k + 1; i < _n; i++)
                        {
                            v[i][j] += t * v[i][k];
                        }
                    }
                }

                for (int i = 0; i < _n; i++)
                {
                    v[i][k] = 0.0;
                }

                v[k][k] = 1.0;
            }

            /* Main iteration loop for the singular values */

            int    pp   = p - 1;
            int    iter = 0;
            double eps  = Number.PositiveRelativeAccuracy;

            while (p > 0)
            {
                int           k;
                IterationStep step;

                /* Here is where a test for too many iterations would go */

                /*
                 * This section of the program inspects for
                 * negligible elements in the s and e arrays.  On
                 * completion the variables kase and k are set as follows.
                 *
                 * DeflateNeglible:  if s[p] and e[k-1] are negligible and k<p
                 * SplitAtNeglible:  if s[k] is negligible and k<p
                 * QR:               if e[k-1] is negligible, k<p, and s[k], ..., s[p] are not negligible.
                 * Convergence:      if e[p-1] is negligible.
                 */

                for (k = p - 2; k >= 0; k--)
                {
                    if (Math.Abs(e[k]) <= eps * (Math.Abs(s[k]) + Math.Abs(s[k + 1])))
                    {
                        e[k] = 0.0;
                        break;
                    }
                }

                if (k == p - 2)
                {
                    step = IterationStep.Convergence;
                }
                else
                {
                    int ks;
                    for (ks = p - 1; ks >= k; ks--)
                    {
                        if (ks == k)
                        {
                            break;
                        }

                        double t = (ks != p ? Math.Abs(e[ks]) : 0.0) + (ks != k + 1 ? Math.Abs(e[ks - 1]) : 0.0);
                        if (Math.Abs(s[ks]) <= eps * t)
                        {
                            s[ks] = 0.0;
                            break;
                        }
                    }

                    if (ks == k)
                    {
                        step = IterationStep.QR;
                    }
                    else if (ks == p - 1)
                    {
                        step = IterationStep.DeflateNeglible;
                    }
                    else
                    {
                        step = IterationStep.SplitAtNeglible;
                        k    = ks;
                    }
                }

                k++;

                /* Perform the task indicated by 'step'. */

                switch (step)
                {
                // Deflate negligible s(p).
                case IterationStep.DeflateNeglible:
                {
                    double f = e[p - 2];
                    e[p - 2] = 0.0;
                    for (int j = p - 2; j >= k; j--)
                    {
                        double t  = Fn.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;

                        if (j != k)
                        {
                            f        = (-sn) * e[j - 1];
                            e[j - 1] = cs * e[j - 1];
                        }

                        for (int i = 0; i < _n; i++)
                        {
                            t           = (cs * v[i][j]) + (sn * v[i][p - 1]);
                            v[i][p - 1] = ((-sn) * v[i][j]) + (cs * v[i][p - 1]);
                            v[i][j]     = t;
                        }
                    }
                }

                break;

                // Split at negligible s(k)
                case IterationStep.SplitAtNeglible:
                {
                    double f = e[k - 1];
                    e[k - 1] = 0.0;
                    for (int j = k; j < p; j++)
                    {
                        double t  = Fn.Hypot(s[j], f);
                        double cs = s[j] / t;
                        double sn = f / t;
                        s[j] = t;
                        f    = (-sn) * e[j];
                        e[j] = cs * e[j];

                        for (int i = 0; i < _m; i++)
                        {
                            t           = (cs * u[i][j]) + (sn * u[i][k - 1]);
                            u[i][k - 1] = ((-sn) * u[i][j]) + (cs * u[i][k - 1]);
                            u[i][j]     = t;
                        }
                    }
                }

                break;

                // Perform one qr step.
                case IterationStep.QR:
                {
                    /* Calculate the shift */

                    double scale = Math.Max(Math.Max(Math.Max(Math.Max(Math.Abs(s[p - 1]), Math.Abs(s[p - 2])), Math.Abs(e[p - 2])), Math.Abs(s[k])), Math.Abs(e[k]));
                    double sp    = s[p - 1] / scale;
                    double spm1  = s[p - 2] / scale;
                    double epm1  = e[p - 2] / scale;
                    double sk    = s[k] / scale;
                    double ek    = e[k] / scale;
                    double b     = (((spm1 + sp) * (spm1 - sp)) + (epm1 * epm1)) / 2.0;
                    double c     = (sp * epm1) * (sp * epm1);
                    double shift = 0.0;
                    if ((b != 0.0) | (c != 0.0))
                    {
                        shift = Math.Sqrt((b * b) + c);

                        if (b < 0.0)
                        {
                            shift = -shift;
                        }

                        shift = c / (b + shift);
                    }

                    double f = ((sk + sp) * (sk - sp)) + shift;
                    double g = sk * ek;

                    /* Chase zeros */

                    for (int j = k; j < p - 1; j++)
                    {
                        double t  = Fn.Hypot(f, g);
                        double cs = f / t;
                        double sn = g / t;

                        if (j != k)
                        {
                            e[j - 1] = t;
                        }

                        f        = (cs * s[j]) + (sn * e[j]);
                        e[j]     = (cs * e[j]) - (sn * s[j]);
                        g        = sn * s[j + 1];
                        s[j + 1] = cs * s[j + 1];

                        for (int i = 0; i < _n; i++)
                        {
                            t           = (cs * v[i][j]) + (sn * v[i][j + 1]);
                            v[i][j + 1] = ((-sn) * v[i][j]) + (cs * v[i][j + 1]);
                            v[i][j]     = t;
                        }

                        t        = Fn.Hypot(f, g);
                        cs       = f / t;
                        sn       = g / t;
                        s[j]     = t;
                        f        = (cs * e[j]) + (sn * s[j + 1]);
                        s[j + 1] = ((-sn) * e[j]) + (cs * s[j + 1]);
                        g        = sn * e[j + 1];
                        e[j + 1] = cs * e[j + 1];

                        if (j < _m - 1)
                        {
                            for (int i = 0; i < _m; i++)
                            {
                                t           = (cs * u[i][j]) + (sn * u[i][j + 1]);
                                u[i][j + 1] = ((-sn) * u[i][j]) + (cs * u[i][j + 1]);
                                u[i][j]     = t;
                            }
                        }
                    }

                    e[p - 2] = f;
                    iter     = iter + 1;
                }

                break;

                // Convergence.
                case IterationStep.Convergence:
                {
                    /* Make the singular values positive */

                    if (s[k] <= 0.0)
                    {
                        s[k] = (s[k] < 0.0 ? -s[k] : 0.0);

                        for (int i = 0; i <= pp; i++)
                        {
                            v[i][k] = -v[i][k];
                        }
                    }

                    /* Order the singular values */

                    while (k < pp)
                    {
                        if (s[k] >= s[k + 1])
                        {
                            break;
                        }

                        double t = s[k];
                        s[k]     = s[k + 1];
                        s[k + 1] = t;

                        if (k < _n - 1)
                        {
                            for (int i = 0; i < _n; i++)
                            {
                                t           = v[i][k + 1];
                                v[i][k + 1] = v[i][k];
                                v[i][k]     = t;
                            }
                        }

                        if (k < _m - 1)
                        {
                            for (int i = 0; i < _m; i++)
                            {
                                t           = u[i][k + 1];
                                u[i][k + 1] = u[i][k];
                                u[i][k]     = t;
                            }
                        }

                        k++;
                    }

                    iter = 0;
                    p--;
                }

                break;
                }
            }

            // (vermorel) transposing the results if needed
            if (_transpose)
            {
                // swaping U and V
                double[][] temp = v;
                v = u;
                u = temp;
            }

            _u        = new Matrix(u);
            _v        = new Matrix(v);
            _singular = new Vector(s);

            InitOnDemandComputations();
        }
コード例 #9
0
        /// <summary>
        /// Updates the state of the system based on the given noisy measurements,
        /// a description of how those measurements relate to the system, and a
        /// covariance <c>Matrix</c> to describe the noise of the system.
        /// </summary>
        /// <param name="z">The measurements of the system.</param>
        /// <param name="H">Measurement model.</param>
        /// <param name="R">Covariance of measurements.</param>
        /// <exception cref="System.ArgumentException">Thrown when given matrices
        /// are of the incorrect size.</exception>
        public void Update(Matrix<double> z, Matrix<double> H, Matrix<double> R)
        {
            KalmanFilter.CheckUpdateParameters(z, H, R, this);

            // We need to use transpose of H a couple of times.
            Matrix<double> Ht = H.Transpose();
            Matrix<double> I = Matrix<double>.Build.DenseIdentity(x.RowCount, x.RowCount);

            Matrix<double> S = (H*P*Ht) + R; // Measurement covariance
            Matrix<double> K = P*Ht*S.Inverse(); // Kalman Gain
            P = (I - (K*H))*P; // Covariance update
            x = x + (K*(z - (H*x))); // State update
        }
コード例 #10
0
        /// <summary>
        /// Perform a discrete time prediction of the system state.
        /// </summary>
        /// <param name="F">State transition matrix.</param>
        /// <param name="G">Noise coupling matrix.</param>
        /// <param name="Q">Plant noise covariance.</param>
        /// <exception cref="System.ArgumentException">Thrown when the column and row
        /// counts for the given matrices are incorrect.</exception>
        /// <remarks>
        /// Performs a prediction of the next state of the Kalman Filter, given
        /// a description of the dynamic equations of the system, the covariance of
        /// the plant noise affecting the system and the equations that describe
        /// the effect on the system of that plant noise.
        /// </remarks>
        public void Predict(Matrix<double> F, Matrix<double> G, Matrix<double> Q)
        {
            KalmanFilter.CheckPredictParameters(F, G, Q, this);

            // State prediction
            x = F*x;

            // Covariance update
            P = (F*P*F.Transpose()) + (G*Q*G.Transpose());
        }
コード例 #11
0
        /// <summary>
        /// Preform a discrete time prediction of the system state.
        /// </summary>
        /// <param name="F">State transition matrix.</param>
        /// <param name="Q">A plant noise covariance matrix.</param>
        /// <exception cref="System.ArgumentException">Thrown when F and Q are not
        /// square matrices with the same number of rows and columns as there are
        /// rows in the state matrix.</exception>
        /// <remarks>Performs a prediction of the next state of the Kalman Filter,
        /// where there is plant noise. The covariance matrix of the plant noise, in
        /// this case, is a square matrix corresponding to the state transition and
        /// the state of the system.</remarks>
        public void Predict(Matrix<double> F, Matrix<double> Q)
        {
            KalmanFilter.CheckPredictParameters(F, Q, this);

            // Predict the state
            x = F*x;
            P = (F*P*F.Transpose()) + Q;
        }
コード例 #12
0
        /// <summary>
        /// Perform a discrete time prediction of the system state.
        /// </summary>
        /// <param name="F">State transition matrix.</param>
        /// <exception cref="System.ArgumentException">Thrown when the given state
        /// transition matrix does not have the same number of row/columns as there
        /// are variables in the state vector.</exception>
        public void Predict(Matrix<double> F)
        {
            KalmanFilter.CheckPredictParameters(F, this);

            x = F*x;
            P = F*P*F.Transpose();
        }