//Protected methods (called by the public methods in parent class) protected override void DoTrain(System.Drawing.Bitmap[] charImgs) { double[][] input = charImgs.Select(img => Converters.ThresholdedBitmapToDoubleArray(img)).ToArray(); kpca = new KernelPrincipalComponentAnalysis(input, kernel, AnalysisMethod.Center); kpca.Compute(); }
public void TransformTest() { // Using a linear kernel should be equivalent to standard PCA IKernel kernel = new Linear(); // Create analysis var target = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center); // Compute target.Compute(); double[,] actual = target.Transform(data, 2); // first inversed.. ? double[,] expected = new double[,] { { -0.827970186, 0.175115307 }, { 1.77758033, -0.142857227 }, { -0.992197494, -0.384374989 }, { -0.274210416, -0.130417207 }, { -1.67580142, 0.209498461 }, { -0.912949103, -0.175282444 }, { 0.099109437, 0.349824698 }, { 1.14457216, -0.046417258 }, { 0.438046137, -0.017764629 }, { 1.22382056, 0.162675287 }, }; // Verify both are equal with 0.001 tolerance value Assert.IsTrue(Matrix.IsEqual(actual, expected, 0.0001)); // Assert the result equals the transformation of the input double[,] result = target.Result; double[,] projection = target.Transform(data); Assert.IsTrue(Matrix.IsEqual(result, projection, 0.000001)); Assert.AreEqual(2, target.Eigenvalues.Length); Assert.AreEqual(10, target.ComponentMatrix.GetLength(0)); Assert.AreEqual(2, target.ComponentMatrix.GetLength(1)); }
public void TransformTest2() { // Using a linear kernel should be equivalent to standard PCA IKernel kernel = new Linear(); // Create analysis KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center); // Set the minimum variance threshold to 0.001 target.Threshold = 0.001; // Compute target.Compute(); var r = target.Result; double[,] actual = target.Transform(data, 1); // first inversed.. ? double[,] expected = new double[,] { { -0.827970186 }, { 1.77758033 }, { -0.992197494 }, { -0.274210416 }, { -1.67580142 }, { -0.912949103 }, { 0.099109437 }, { 1.14457216 }, { 0.438046137 }, { 1.22382056 }, }; // Verify both are equal with 0.001 tolerance value Assert.IsTrue(Matrix.IsEqual(actual, expected, 0.0001)); // Assert the result equals the transformation of the input double[,] result = target.Result; double[,] projection = target.Transform(data); Assert.IsTrue(Matrix.IsEqual(result, projection, 0.000001)); }
public void RevertTest3() { string path = @"..\..\..\..\Unit Tests\Accord.Tests.Statistics\Resources\examples.xls"; // Create a new reader, opening a given path ExcelReader reader = new ExcelReader(path); // Afterwards, we can query the file for all // worksheets within the specified workbook: string[] sheets = reader.GetWorksheetList(); // Finally, we can request an specific sheet: DataTable table = reader.GetWorksheet("Wikipedia"); // Now, we have loaded the Excel file into a DataTable. We // can go further and transform it into a matrix to start // running other algorithms on it: double[,] matrix = table.ToMatrix(); IKernel kernel = new Polynomial(2); // Create analysis KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(matrix, kernel, AnalysisMethod.Center, centerInFeatureSpace: true); target.Compute(); double[,] forward = target.Result; double[,] reversion = target.Revert(forward); Assert.IsTrue(!reversion.HasNaN()); }
public void RevertTest() { // Using a linear kernel should be equivalent to standard PCA IKernel kernel = new Linear(); // Create analysis KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center); // Compute target.Compute(); // Compute image double[,] image = target.Transform(data, 2); // Compute pre-image double[,] preimage = target.Revert(image); // Check if pre-image equals the original data Assert.IsTrue(Matrix.IsEqual(data, preimage, 0.0001)); }
public void TransformTest_Jagged() { double[][] sourceMatrix = new double[][] { new double[] { 2.5, 2.4 }, new double[] { 0.5, 0.7 }, new double[] { 2.2, 2.9 }, new double[] { 1.9, 2.2 }, new double[] { 3.1, 3.0 }, new double[] { 2.3, 2.7 }, new double[] { 2.0, 1.6 }, new double[] { 1.0, 1.1 }, new double[] { 1.5, 1.6 }, new double[] { 1.1, 0.9 } }; // Create a new linear kernel IKernel kernel = new Linear(); // Creates the Kernel Principal Component Analysis of the given data var kpca = new KernelPrincipalComponentAnalysis(sourceMatrix, kernel); // Compute the Kernel Principal Component Analysis kpca.Compute(); // The following statement throws an exception: // An unhandled exception of type 'System.IndexOutOfRangeException' occurred in Accord.Math.dll double[] actual1 = kpca.Transform(sourceMatrix[0]); double[][] actual = kpca.Transform(sourceMatrix); double[][] expected = { new double[] { -0.827970186, 0.175115307 }, new double[] { 1.77758033, -0.142857227 }, new double[] { -0.992197494, -0.384374989 }, new double[] { -0.274210416, -0.130417207 }, new double[] { -1.67580142, 0.209498461 }, new double[] { -0.912949103, -0.175282444 }, new double[] { 0.099109437, 0.349824698 }, new double[] { 1.14457216, -0.046417258 }, new double[] { 0.438046137, -0.017764629 }, new double[] { 1.22382056, 0.162675287 }, }; Assert.IsTrue(Matrix.IsEqual(expected[0], expected[0])); // Verify both are equal with 0.001 tolerance value Assert.IsTrue(Matrix.IsEqual(actual, expected, 0.0001)); // Assert the result equals the transformation of the input double[,] result = kpca.Result; double[,] projection = kpca.Transform(data); Assert.IsTrue(Matrix.IsEqual(result, projection, 0.000001)); }
public void TransformTest5() { int element = 10; int dimension = 20; double[,] data = new double[element, dimension]; int x = 0; for (int i = 0; i < element; i++) { for (int j = 0; j < dimension; j++) data[i, j] = x; x += 10; } IKernel kernel = new Gaussian(10.0); var kpca = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center); kpca.Compute(); double[,] result = kpca.Transform(data, 2); double[,] expected = new double[,] { { -0.23053882357602, -0.284413654763538 }, { -0.387883199575312, -0.331485820285834 }, { -0.422077400361521, -0.11134948984113 }, { -0.322265008788599, 0.23632015508648 }, { -0.12013575394419, 0.490928809797139 }, { 0.120135753938394, 0.490928809796094 }, { 0.322265008787236, 0.236320155085067 }, { 0.422077400363969, -0.111349489837512 }, { 0.38788319957867, -0.331485820278937 }, { 0.230538823577373, -0.28441365475783 } }; Assert.IsTrue(result.IsEqual(expected, 1e-10)); }
public void learn_whiten_success() { double[,] data = { { 2.5, 2.4 }, { 0.5, 0.7 }, { 2.2, 2.9 }, { 1.9, 2.2 }, { 3.1, 3.0 }, { 2.3, 2.7 }, { 2.0, 1.6 }, { 1.0, 1.1 }, { 1.5, 1.6 }, { 1.1, 0.9 } }; var method = PrincipalComponentMethod.Center; // PrincipalComponentMethod.Standardize var pca = new KernelPrincipalComponentAnalysis(new Linear(), method, whiten: true); pca.Learn(data); double[] eigenvalues = { 1.28402771, 0.0490833989 }; double[] proportion = eigenvalues.Divide(eigenvalues.Sum()); double[,] eigenvectors = { { 0.19940687993951403, -1.1061252858739095 }, { 0.21626410214440508, 1.0199057073792104 } }; // Everything is alright (up to the 9 decimal places shown in the tutorial) // Assert.IsTrue(eigenvectors.IsEqual(pca.ComponentMatrix, rtol: 1e-9)); Assert.IsTrue(proportion.IsEqual(pca.ComponentProportions, rtol: 1e-9)); Assert.IsTrue(eigenvalues.IsEqual(pca.Eigenvalues.Divide(data.GetLength(0) - 1), rtol: 1e-5)); double[,] actual = pca.Transform(data); double[][] expected = new double[][] { new double[] { 0.243560157209023, -0.263472650637184 }, new double[] { -0.522902576315494, 0.214938218565977 }, new double[] { 0.291870144299372, 0.578317788814594 }, new double[] { 0.0806632088164338, 0.19622137941132 }, new double[] { 0.492962746459375, -0.315204397734004 }, new double[] { 0.268558011864442, 0.263724118751361 }, new double[] { -0.0291545644762578, -0.526334573603598 }, new double[] { -0.336693495487974, 0.0698378585807067 }, new double[] { -0.128858004446015, 0.0267280693333571 }, new double[] { -0.360005627922904, -0.244755811482527 } }.Multiply(-1); // Everything is correct (up to 8 decimal places) Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8)); }
public void TransformTest3() { // Using a linear kernel should be equivalent to standard PCA IKernel kernel = new Linear(); // Create analysis KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(data, kernel); // Compute target.Compute(); bool thrown = false; try { double[,] actual = target.Transform(data, 11); } catch { thrown = true; } Assert.IsTrue(thrown); }
public void learn_success() { #region doc_learn_1 // Reproducing Lindsay Smith's "Tutorial on Principal Component Analysis" // using the framework's default method. The tutorial can be found online // at http://www.sccg.sk/~haladova/principal_components.pdf // Step 1. Get some data // --------------------- double[][] data = { new double[] { 2.5, 2.4 }, new double[] { 0.5, 0.7 }, new double[] { 2.2, 2.9 }, new double[] { 1.9, 2.2 }, new double[] { 3.1, 3.0 }, new double[] { 2.3, 2.7 }, new double[] { 2.0, 1.6 }, new double[] { 1.0, 1.1 }, new double[] { 1.5, 1.6 }, new double[] { 1.1, 0.9 } }; // Step 2. Subtract the mean // ------------------------- // Note: The framework does this automatically. By default, the framework // uses the "Center" method, which only subtracts the mean. However, it is // also possible to remove the mean *and* divide by the standard deviation // (thus performing the correlation method) by specifying "Standardize" // instead of "Center" as the AnalysisMethod. var method = PrincipalComponentMethod.Center; // PrincipalComponentMethod.Standardize // Step 3. Compute the covariance matrix // ------------------------------------- // Note: Accord.NET does not need to compute the covariance // matrix in order to compute PCA. The framework uses the SVD // method which is more numerically stable, but may require // more processing or memory. In order to replicate the tutorial // using covariance matrices, please see the next unit test. // Create the analysis using the selected method var pca = new KernelPrincipalComponentAnalysis(new Linear(), method); // Compute it pca.Learn(data); // Step 4. Compute the eigenvectors and eigenvalues of the covariance matrix // ------------------------------------------------------------------------- // Note: Since Accord.NET uses the SVD method rather than the Eigendecomposition // method, the Eigenvalues are computed from the singular values. However, it is // not the Eigenvalues themselves which are important, but rather their proportion: // Those are the expected eigenvalues, in descending order: double[] eigenvalues = { 1.28402771, 0.0490833989 }; // And this will be their proportion: double[] proportion = eigenvalues.Divide(eigenvalues.Sum()); Assert.IsTrue(proportion.IsEqual(pca.ComponentProportions, rtol: 1e-9)); Assert.IsTrue(eigenvalues.IsEqual(pca.Eigenvalues.Divide(data.GetLength(0) - 1), rtol: 1e-5)); // Step 5. Deriving the new data set // --------------------------------- double[][] actual = pca.Transform(data); // transformedData shown in pg. 18 double[,] expected = new double[,] { { 0.827970186, -0.175115307 }, { -1.77758033, 0.142857227 }, { 0.992197494, 0.384374989 }, { 0.274210416, 0.130417207 }, { 1.67580142, -0.209498461 }, { 0.912949103, 0.175282444 }, { -0.099109437, -0.349824698 }, { -1.14457216, 0.046417258 }, { -0.438046137, 0.017764629 }, { -1.22382056, -0.162675287 }, }.Multiply(-1); // Everything is correct (up to 8 decimal places) Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8)); // Finally, we can project all the data double[][] output1 = pca.Transform(data); // Or just its first components by setting // NumberOfOutputs to the desired components: pca.NumberOfOutputs = 1; // And then calling transform again: double[][] output2 = pca.Transform(data); // We can also limit to 80% of explained variance: pca.ExplainedVariance = 0.8; // And then call transform again: double[][] output3 = pca.Transform(data); #endregion actual = pca.Transform(data); // transformedData shown in pg. 18 expected = new double[,] { { 0.827970186 }, { -1.77758033, }, { 0.992197494 }, { 0.274210416 }, { 1.67580142, }, { 0.912949103 }, { -0.099109437 }, { -1.14457216, }, { -0.438046137 }, { -1.22382056, }, }.Multiply(-1); // Everything is correct (up to 8 decimal places) Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8)); // Create the analysis using the selected method pca = new KernelPrincipalComponentAnalysis() { Kernel = new Linear(), Method = method, NumberOfOutputs = 1 }; // Compute it pca.Learn(data); actual = pca.Transform(data); // transformedData shown in pg. 18 expected = new double[,] { { 0.827970186 }, { -1.77758033, }, { 0.992197494 }, { 0.274210416 }, { 1.67580142, }, { 0.912949103 }, { -0.099109437 }, { -1.14457216, }, { -0.438046137 }, { -1.22382056, }, }.Multiply(-1); // Everything is correct (up to 8 decimal places) Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8)); }
public void kernel_matrix_success() { var actual = new KernelPrincipalComponentAnalysis(new Linear(), PrincipalComponentMethod.KernelMatrix); var expected = new KernelPrincipalComponentAnalysis(data, new Linear(), AnalysisMethod.Standardize); Linear kernel = new Linear(); double[][] K = kernel.ToJagged(data.ZScores().ToJagged()); // Compute actual.Learn(K); expected.Compute(); // Transform double[][] actualTransform = actual.Transform(K); double[][] expectedTransform1 = expected.Transform(data).ToJagged(); double[][] expectedTransform2 = expected.Transform(data.ToJagged()); // Verify both are equal with 0.01 tolerance value Assert.IsTrue(Matrix.IsEqual(actualTransform, expectedTransform1, 0.01)); Assert.IsTrue(Matrix.IsEqual(actualTransform, expectedTransform2, 0.01)); }
public void transform_more_columns_than_samples_new_interface() { // Lindsay's tutorial data double[,] datat = data.Transpose(); var target = new KernelPrincipalComponentAnalysis(new Linear()); // Compute target.Learn(datat); // Transform double[,] actual = target.Transform(datat); // Assert the scores equals the transformation of the input double[,] result = target.Result; double[,] expected = new double[,] { { 0.50497524691810358 }, { -0.504975246918104 } }.Multiply(-1); Assert.IsTrue(Matrix.IsEqual(expected, actual, 0.01)); Assert.IsTrue(Matrix.IsEqual(result, actual, 0.01)); }
public void RevertTest2_new_method() { string path = @"Resources\examples.xls"; // Create a new reader, opening a given path ExcelReader reader = new ExcelReader(path); // Afterwards, we can query the file for all // worksheets within the specified workbook: string[] sheets = reader.GetWorksheetList(); // Finally, we can request an specific sheet: DataTable table = reader.GetWorksheet("Wikipedia"); // Now, we have loaded the Excel file into a DataTable. We // can go further and transform it into a matrix to start // running other algorithms on it: double[][] matrix = table.ToArray(); IKernel kernel = new Gaussian(5); // Create analysis var target = new KernelPrincipalComponentAnalysis(kernel) { Method = PrincipalComponentMethod.Center, Center = true // Center in feature space }; var regression = target.Learn(matrix); double[][] forward = regression.Transform(matrix); double[][] reversion = target.Revert(forward); Assert.IsTrue(!reversion.HasNaN()); }
public void test_kernlab_new_method() { // Tested against R's kernlab // test <- c(16, 117, 94, 132, 13, 73, 68, 129, 91, 50, 56, 12, 145, 105, 35, 53, 38, 51, 85, 116) int[] test = { 15, 116, 93, 131, 12, 72, 67, 128, 90, 49, 55, 11, 144, 104, 34, 52, 37, 50, 84, 115 }; // data(iris) double[,] iris = create_iris(); // kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),features=2) var data = iris.Remove(test, new[] { 4 }); var kernel = new Gaussian() { Gamma = 1 }; var kpc = new KernelPrincipalComponentAnalysis(kernel); kpc.NumberOfOutputs = 2; var transform = kpc.Learn(data); var rotated = kpc.Result; var pcv = kpc.ComponentMatrix; var eig = kpc.Eigenvalues; double[] expected_eig = { 28.542404060412132, 15.235596653653861 }; double[,] expected_pcv = expected_r(); Assert.IsTrue(Matrix.IsEqual(expected_eig, eig, 1e-10)); Assert.IsTrue(Matrix.IsEqual(expected_pcv, pcv, 1e-10)); double[,] irisSubset = iris_sub(); var testing = iris.Submatrix(test, new[] { 0, 1, 2, 3 }); Assert.IsTrue(Matrix.IsEqual(irisSubset, testing)); double[,] expectedProjection = expected_p(); double[,] proj = kpc.Transform(testing); Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6)); double[][] proj2 = kpc.Transform(testing.ToJagged()); Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6)); double[][] proj3 = transform.Transform(testing.ToJagged()); Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6)); }
/// <summary> /// Launched when the user clicks the "Run analysis" button. /// </summary> /// private void btnCompute_Click(object sender, EventArgs e) { // Save any pending changes dgvAnalysisSource.EndEdit(); if (dgvAnalysisSource.DataSource == null) { MessageBox.Show("Please load some data using File > Open!"); return; } // Create a matrix from the source data table double[,] sourceMatrix = (dgvAnalysisSource.DataSource as DataTable).ToMatrix(out columnNames); int rows = sourceMatrix.GetLength(0); int cols = sourceMatrix.GetLength(1); // Create and compute a new Simple Descriptive Analysis sda = new DescriptiveAnalysis(sourceMatrix, columnNames); sda.Compute(); // Show the descriptive analysis on the screen dgvDistributionMeasures.DataSource = sda.Measures; // Create the kernel function IKernel kernel = createKernel(); // Get the input values (the two first columns) double[,] inputs = sourceMatrix.GetColumns(0, 1); // Get only the associated labels (last column) int[] outputs = sourceMatrix.GetColumn(2).ToInt32(); AnalysisMethod method = (AnalysisMethod)cbMethod.SelectedValue; // Creates the Kernel Principal Component Analysis of the given source kpca = new KernelPrincipalComponentAnalysis(inputs, kernel, method); // Whether to center in space kpca.Center = cbCenter.Checked; kpca.Compute(); // Finally, compute the analysis! double[,] result; if (kpca.Components.Count >= 2) { // Perform the transformation of the data using two components result = kpca.Transform(inputs, 2); } else { result = kpca.Transform(inputs, 1); result = result.InsertColumn(Matrix.Vector(result.GetLength(0), 0.0)); } // Create a new plot with the original Z column double[,] points = result.InsertColumn(sourceMatrix.GetColumn(2)); // Create output scatter plot outputScatterplot.DataSource = points; CreateScatterplot(graphMapFeature, points); // Create output table dgvProjectionResult.DataSource = new ArrayDataView(points, columnNames); dgvReversionSource.DataSource = new ArrayDataView(kpca.Result); // Populates components overview with analysis data dgvFeatureVectors.DataSource = new ArrayDataView(kpca.ComponentMatrix); dgvPrincipalComponents.DataSource = kpca.Components; dgvProjectionComponents.DataSource = kpca.Components; dgvReversionComponents.DataSource = kpca.Components; cumulativeView.DataSource = kpca.Components; distributionView.DataSource = kpca.Components; numComponents.Maximum = kpca.Components.Count; numNeighbor.Maximum = kpca.Result.GetLength(0); numNeighbor.Value = System.Math.Min(10, numNeighbor.Maximum); lbStatus.Text = "Good! Feel free to browse the other tabs to see what has been found."; }
public void TransformTest4() { // Tested against R's kernlab // test <- c(16, 117, 94, 132, 13, 73, 68, 129, 91, 50, 56, 12, 145, 105, 35, 53, 38, 51, 85, 116) int[] test = { 15, 116, 93, 131, 12, 72, 67, 128, 90, 49, 55, 11, 144, 104, 34, 52, 37, 50, 84, 115 }; // data(iris) double[,] iris = { #region Fisher's iris dataset { 5.1, 3.5, 1.4, 0.2, 0 }, { 4.9, 3.0, 1.4, 0.2, 0 }, { 4.7, 3.2, 1.3, 0.2, 0 }, { 4.6, 3.1, 1.5, 0.2, 0 }, { 5.0, 3.6, 1.4, 0.2, 0 }, { 5.4, 3.9, 1.7, 0.4, 0 }, { 4.6, 3.4, 1.4, 0.3, 0 }, { 5.0, 3.4, 1.5, 0.2, 0 }, { 4.4, 2.9, 1.4, 0.2, 0 }, { 4.9, 3.1, 1.5, 0.1, 0 }, { 5.4, 3.7, 1.5, 0.2, 0 }, { 4.8, 3.4, 1.6, 0.2, 0 }, { 4.8, 3.0, 1.4, 0.1, 0 }, { 4.3, 3.0, 1.1, 0.1, 0 }, { 5.8, 4.0, 1.2, 0.2, 0 }, { 5.7, 4.4, 1.5, 0.4, 0 }, { 5.4, 3.9, 1.3, 0.4, 0 }, { 5.1, 3.5, 1.4, 0.3, 0 }, { 5.7, 3.8, 1.7, 0.3, 0 }, { 5.1, 3.8, 1.5, 0.3, 0 }, { 5.4, 3.4, 1.7, 0.2, 0 }, { 5.1, 3.7, 1.5, 0.4, 0 }, { 4.6, 3.6, 1.0, 0.2, 0 }, { 5.1, 3.3, 1.7, 0.5, 0 }, { 4.8, 3.4, 1.9, 0.2, 0 }, { 5.0, 3.0, 1.6, 0.2, 0 }, { 5.0, 3.4, 1.6, 0.4, 0 }, { 5.2, 3.5, 1.5, 0.2, 0 }, { 5.2, 3.4, 1.4, 0.2, 0 }, { 4.7, 3.2, 1.6, 0.2, 0 }, { 4.8, 3.1, 1.6, 0.2, 0 }, { 5.4, 3.4, 1.5, 0.4, 0 }, { 5.2, 4.1, 1.5, 0.1, 0 }, { 5.5, 4.2, 1.4, 0.2, 0 }, { 4.9, 3.1, 1.5, 0.2, 0 }, { 5.0, 3.2, 1.2, 0.2, 0 }, { 5.5, 3.5, 1.3, 0.2, 0 }, { 4.9, 3.6, 1.4, 0.1, 0 }, { 4.4, 3.0, 1.3, 0.2, 0 }, { 5.1, 3.4, 1.5, 0.2, 0 }, { 5.0, 3.5, 1.3, 0.3, 0 }, { 4.5, 2.3, 1.3, 0.3, 0 }, { 4.4, 3.2, 1.3, 0.2, 0 }, { 5.0, 3.5, 1.6, 0.6, 0 }, { 5.1, 3.8, 1.9, 0.4, 0 }, { 4.8, 3.0, 1.4, 0.3, 0 }, { 5.1, 3.8, 1.6, 0.2, 0 }, { 4.6, 3.2, 1.4, 0.2, 0 }, { 5.3, 3.7, 1.5, 0.2, 0 }, { 5.0, 3.3, 1.4, 0.2, 0 }, { 7.0, 3.2, 4.7, 1.4, 1 }, { 6.4, 3.2, 4.5, 1.5, 1 }, { 6.9, 3.1, 4.9, 1.5, 1 }, { 5.5, 2.3, 4.0, 1.3, 1 }, { 6.5, 2.8, 4.6, 1.5, 1 }, { 5.7, 2.8, 4.5, 1.3, 1 }, { 6.3, 3.3, 4.7, 1.6, 1 }, { 4.9, 2.4, 3.3, 1.0, 1 }, { 6.6, 2.9, 4.6, 1.3, 1 }, { 5.2, 2.7, 3.9, 1.4, 1 }, { 5.0, 2.0, 3.5, 1.0, 1 }, { 5.9, 3.0, 4.2, 1.5, 1 }, { 6.0, 2.2, 4.0, 1.0, 1 }, { 6.1, 2.9, 4.7, 1.4, 1 }, { 5.6, 2.9, 3.6, 1.3, 1 }, { 6.7, 3.1, 4.4, 1.4, 1 }, { 5.6, 3.0, 4.5, 1.5, 1 }, { 5.8, 2.7, 4.1, 1.0, 1 }, { 6.2, 2.2, 4.5, 1.5, 1 }, { 5.6, 2.5, 3.9, 1.1, 1 }, { 5.9, 3.2, 4.8, 1.8, 1 }, { 6.1, 2.8, 4.0, 1.3, 1 }, { 6.3, 2.5, 4.9, 1.5, 1 }, { 6.1, 2.8, 4.7, 1.2, 1 }, { 6.4, 2.9, 4.3, 1.3, 1 }, { 6.6, 3.0, 4.4, 1.4, 1 }, { 6.8, 2.8, 4.8, 1.4, 1 }, { 6.7, 3.0, 5.0, 1.7, 1 }, { 6.0, 2.9, 4.5, 1.5, 1 }, { 5.7, 2.6, 3.5, 1.0, 1 }, { 5.5, 2.4, 3.8, 1.1, 1 }, { 5.5, 2.4, 3.7, 1.0, 1 }, { 5.8, 2.7, 3.9, 1.2, 1 }, { 6.0, 2.7, 5.1, 1.6, 1 }, { 5.4, 3.0, 4.5, 1.5, 1 }, { 6.0, 3.4, 4.5, 1.6, 1 }, { 6.7, 3.1, 4.7, 1.5, 1 }, { 6.3, 2.3, 4.4, 1.3, 1 }, { 5.6, 3.0, 4.1, 1.3, 1 }, { 5.5, 2.5, 4.0, 1.3, 1 }, { 5.5, 2.6, 4.4, 1.2, 1 }, { 6.1, 3.0, 4.6, 1.4, 1 }, { 5.8, 2.6, 4.0, 1.2, 1 }, { 5.0, 2.3, 3.3, 1.0, 1 }, { 5.6, 2.7, 4.2, 1.3, 1 }, { 5.7, 3.0, 4.2, 1.2, 1 }, { 5.7, 2.9, 4.2, 1.3, 1 }, { 6.2, 2.9, 4.3, 1.3, 1 }, { 5.1, 2.5, 3.0, 1.1, 1 }, { 5.7, 2.8, 4.1, 1.3, 1 }, { 6.3, 3.3, 6.0, 2.5, 2 }, { 5.8, 2.7, 5.1, 1.9, 2 }, { 7.1, 3.0, 5.9, 2.1, 2 }, { 6.3, 2.9, 5.6, 1.8, 2 }, { 6.5, 3.0, 5.8, 2.2, 2 }, { 7.6, 3.0, 6.6, 2.1, 2 }, { 4.9, 2.5, 4.5, 1.7, 2 }, { 7.3, 2.9, 6.3, 1.8, 2 }, { 6.7, 2.5, 5.8, 1.8, 2 }, { 7.2, 3.6, 6.1, 2.5, 2 }, { 6.5, 3.2, 5.1, 2.0, 2 }, { 6.4, 2.7, 5.3, 1.9, 2 }, { 6.8, 3.0, 5.5, 2.1, 2 }, { 5.7, 2.5, 5.0, 2.0, 2 }, { 5.8, 2.8, 5.1, 2.4, 2 }, { 6.4, 3.2, 5.3, 2.3, 2 }, { 6.5, 3.0, 5.5, 1.8, 2 }, { 7.7, 3.8, 6.7, 2.2, 2 }, { 7.7, 2.6, 6.9, 2.3, 2 }, { 6.0, 2.2, 5.0, 1.5, 2 }, { 6.9, 3.2, 5.7, 2.3, 2 }, { 5.6, 2.8, 4.9, 2.0, 2 }, { 7.7, 2.8, 6.7, 2.0, 2 }, { 6.3, 2.7, 4.9, 1.8, 2 }, { 6.7, 3.3, 5.7, 2.1, 2 }, { 7.2, 3.2, 6.0, 1.8, 2 }, { 6.2, 2.8, 4.8, 1.8, 2 }, { 6.1, 3.0, 4.9, 1.8, 2 }, { 6.4, 2.8, 5.6, 2.1, 2 }, { 7.2, 3.0, 5.8, 1.6, 2 }, { 7.4, 2.8, 6.1, 1.9, 2 }, { 7.9, 3.8, 6.4, 2.0, 2 }, { 6.4, 2.8, 5.6, 2.2, 2 }, { 6.3, 2.8, 5.1, 1.5, 2 }, { 6.1, 2.6, 5.6, 1.4, 2 }, { 7.7, 3.0, 6.1, 2.3, 2 }, { 6.3, 3.4, 5.6, 2.4, 2 }, { 6.4, 3.1, 5.5, 1.8, 2 }, { 6.0, 3.0, 4.8, 1.8, 2 }, { 6.9, 3.1, 5.4, 2.1, 2 }, { 6.7, 3.1, 5.6, 2.4, 2 }, { 6.9, 3.1, 5.1, 2.3, 2 }, { 5.8, 2.7, 5.1, 1.9, 2 }, { 6.8, 3.2, 5.9, 2.3, 2 }, { 6.7, 3.3, 5.7, 2.5, 2 }, { 6.7, 3.0, 5.2, 2.3, 2 }, { 6.3, 2.5, 5.0, 1.9, 2 }, { 6.5, 3.0, 5.2, 2.0, 2 }, { 6.2, 3.4, 5.4, 2.3, 2 }, { 5.9, 3.0, 5.1, 1.8, 2 }, #endregion }; // kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),features=2) var data = iris.Remove(test, new[] { 4 }); var kernel = new Gaussian() { Gamma = 1 }; var kpc = new KernelPrincipalComponentAnalysis(data, kernel); kpc.Compute(2); var rotated = kpc.Result; var pcv = kpc.ComponentMatrix; var eig = kpc.Eigenvalues; double[] expected_eig = { 28.542404060412132, 15.235596653653861 }; double[,] expected_pcv = { #region expected PCV without R's / m normalization { -0.0266876243479222, -0.00236424647855596 }, { -0.0230827502249994, -0.00182207284533632 }, { -0.0235846044938792, -0.00184417084258023 }, { -0.0219741114149703, -0.00162806197434679 }, { -0.0262369254935451, -0.00228351232176506 }, { -0.0194129527129315, -0.00128157547584046 }, { -0.0233710173690426, -0.00183018780267092 }, { -0.0270621345426091, -0.00244551460941156 }, { -0.01660360115437, -0.000759995006404066 }, { -0.0241543595644871, -0.00200028851593623 }, { -0.0229396684027426, -0.00178791975184668 }, { -0.0141003945759371, -0.000349601250510858 }, { -0.0122801944616023, -0.00011745003303124 }, { -0.0195599909514198, -0.00123924882430174 }, { -0.0267285199984888, -0.00237835151986576 }, { -0.0164051441608544, -0.000826433392421186 }, { -0.0241385103747907, -0.00196921837902471 }, { -0.0228276819006861, -0.00190280719845395 }, { -0.0250090125071634, -0.00212322482498387 }, { -0.018268574949505, -0.00103729989327242 }, { -0.0239555047501124, -0.00216590896337712 }, { -0.0218837974825259, -0.00180921340210779 }, { -0.0228699114274226, -0.00189079843025579 }, { -0.0262414571955617, -0.00238666692022459 }, { -0.02628286882499, -0.00232756740052467 }, { -0.0261369413490628, -0.00229661111040973 }, { -0.0237893959503383, -0.00195315162891338 }, { -0.0237354902927562, -0.00197089686864334 }, { -0.0234996712936547, -0.0019545398678434 }, { -0.0179796342021205, -0.00100004281923827 }, { -0.0143171193045046, -0.000421228427584423 }, { -0.0241702773143143, -0.00196078350204665 }, { -0.0215781675204649, -0.00158425565875557 }, { -0.0174405137049866, -0.000872162100068597 }, { -0.0268982927662575, -0.00242925852652081 }, { -0.0261930727206913, -0.00227548913089953 }, { -0.00807266421494459, 0.000505384268295841 }, { -0.0189832707329651, -0.00111618515851182 }, { -0.023789443724428, -0.00203239968623136 }, { -0.0201457716377357, -0.00150731437393246 }, { -0.0226387870826046, -0.00174799717649726 }, { -0.0237772220904885, -0.00192536309172948 }, { -0.0227864577886965, -0.00172757669197999 }, { -0.0241368046325238, -0.00197147776349598 }, { 0.0162307596401467, -0.00932217153629181 }, { 0.00924104683890504, -0.0371256298132236 }, { 0.0172460604733757, -0.00601678602419225 }, { 0.0164784470762724, -0.00012129053123478 }, { 0.00225808467595593, -0.0155701555363185 }, { 0.0152659569368524, -0.00695503994803249 }, { 0.00795619200816849, -0.034188555904496 }, { 0.00255986394744671, -0.0156335839305463 }, { 0.0157735235376026, -0.0339711483141172 }, { 0.00860192955815661, -0.0310332456913026 }, { 0.0188286198627367, -0.0143146603067418 }, { 0.0081385823965042, -0.0358483794263587 }, { 0.0131727085950618, -0.00748671161967017 }, { 0.0150373592446138, -0.0269773780381651 }, { 0.0126779242124717, -0.0162727482334416 }, { 0.00983265072294127, -0.0416039968698012 }, { 0.0162669562079483, -0.000151449934923387 }, { 0.0137854766363786, -0.0375070307423622 }, { 0.0170058660389757, -0.0184237621007135 }, { 0.0154946725649067, -0.0227889410670457 }, { 0.014708096275464, -0.011169199019916 }, { 0.0135541309647514, 0.00627293040317239 }, { 0.0153982178833786, 0.0228745884070871 }, { 0.0186116855914761, -0.0238281923214434 }, { 0.00661605660296714, -0.0332168101819555 }, { 0.00812230548276198, -0.0380947707628449 }, { 0.00704157480127114, -0.0353293378234606 }, { 0.0118813500247593, -0.0433955442329169 }, { 0.0168403649935284, 0.00717417511929008 }, { 0.0144885311444922, -0.0128879186387195 }, { 0.0148385454088314, 0.00481616750741218 }, { 0.0127847825706042, -0.0211295878510692 }, { 0.0126141523297424, -0.0394948238730571 }, { 0.0105804278587419, -0.0411832808826231 }, { 0.0185081272399827, -0.0181339486962481 }, { 0.0124993892884636, -0.0434407731971394 }, { 0.0135227934497893, -0.0415894662412569 }, { 0.0136028421755366, -0.0388446289823116 }, { 0.0144604273990706, -0.0404041262573942 }, { 0.0165646866155949, -0.0294021220435322 }, { 0.00146858312783178, -0.0134333124454357 }, { 0.0137785343752508, -0.0429733697468562 }, { 0.00510997410924024, 0.0292833047881736 }, { 0.014720812085274, 0.00944264118212137 }, { 0.00598583015620509, 0.038742545754176 }, { 0.0125544895333347, 0.0349170237345097 }, { 0.00140911493699792, 0.0164126558963803 }, { 0.00546764790022381, -0.0140904440836446 }, { 0.0029496609416271, 0.0249945804373137 }, { 0.00769932014045035, 0.0313261912102264 }, { 0.00266139821119332, 0.0231665860038695 }, { 0.0147368620502789, 0.0315131740192214 }, { 0.0149582869669828, 0.0314622232024109 }, { 0.0106818628524054, 0.0443273862959601 }, { 0.0123400540017047, 0.00422397833506881 }, { 0.0101542521522688, 0.0157643916651046 }, { 0.000660568495239385, 0.0087957765410289 }, { 0.000634971613911479, 0.00896839373841372 }, { 0.0119909422310846, -0.0019235494568038 }, { 0.00742254354227651, 0.0421145349479265 }, { 0.0130658707704511, 0.000658712215109605 }, { 0.00103199141821948, 0.0130131637684367 }, { 0.0180388007633923, 0.0112135357385706 }, { 0.00879897568153878, 0.0428371609763469 }, { 0.00466754803065601, 0.0321456973019424 }, { 0.0188135431637204, 0.00458127473828957 }, { 0.0184728744733845, 0.00843677964296344 }, { 0.0055676853191067, 0.0305087649038716 }, { 0.0033635667326866, 0.026834775073324 }, { 0.0108405706484462, 0.0394739066547236 }, { 0.0172770225385115, 0.0124967454210229 }, { 0.0100507351970463, 0.0166565450918105 }, { 0.00209404741665691, 0.0205532162586405 }, { 0.0078782378323636, 0.0341148825697675 }, { 0.0132731813046484, 0.0368540207320806 }, { 0.0182550250587539, 0.000797957664175355 }, { 0.0102561686092287, 0.0420705939254378 }, { 0.00857331992305152, 0.0423810139397453 }, { 0.00964648674506066, 0.0337591223497657 }, { 0.014720812085274, 0.00944264118212137 }, { 0.00659947194015947, 0.0404655648392282 }, { 0.011337029514041, 0.0378339231578959 }, { 0.0154602034267052, 0.0153085911335171 }, { 0.0152371977428677, 0.0355309408870963 }, { 0.0096520854263212, 0.0316677099444034 }, { 0.016280981143395, 0.011860068380509 } #endregion }; Assert.IsTrue(Matrix.IsEqual(expected_eig, eig, 1e-10)); Assert.IsTrue(Matrix.IsEqual(expected_pcv, pcv, 1e-10)); double[,] irisSubset = { #region Iris subset for testing { 5.7, 4.4, 1.5, 0.4 }, { 6.5, 3.0, 5.5, 1.8 }, { 5.0, 2.3, 3.3, 1.0 }, { 7.9, 3.8, 6.4, 2.0 }, { 4.8, 3.0, 1.4, 0.1 }, { 6.3, 2.5, 4.9, 1.5 }, { 5.8, 2.7, 4.1, 1.0 }, { 6.4, 2.8, 5.6, 2.1 }, { 5.5, 2.6, 4.4, 1.2 }, { 5.0, 3.3, 1.4, 0.2 }, { 5.7, 2.8, 4.5, 1.3 }, { 4.8, 3.4, 1.6, 0.2 }, { 6.7, 3.3, 5.7, 2.5 }, { 6.5, 3.0, 5.8, 2.2 }, { 4.9, 3.1, 1.5, 0.2 }, { 6.9, 3.1, 4.9, 1.5 }, { 4.9, 3.6, 1.4, 0.1 }, { 7.0, 3.2, 4.7, 1.4 }, { 5.4, 3.0, 4.5, 1.5 }, { 6.4, 3.2, 5.3, 2.3 }, #endregion }; var testing = iris.Submatrix(test, new[] { 0, 1, 2, 3 }); Assert.IsTrue(Matrix.IsEqual(irisSubset, testing)); double[,] proj = kpc.Transform(testing); double[,] expectedProjection = { #region expected projection without R's /m normalization { -0.262045246354652, 0.00522592803297944 }, { 0.379100878015288, 0.588655883281293 }, { 0.071459976634984, -0.256289120689712 }, { 0.0208479105625222, 0.139976227370984 }, { -0.634360697174036, -0.0253624940325211 }, { 0.467841054198416, 0.0142078237631541 }, { 0.3464723948387, -0.62695357333265 }, { 0.327328144102457, 0.603762286061834 }, { 0.351964514241981, -0.539035845068089 }, { -0.759054821003877, -0.035920361137046 }, { 0.449638018323254, -0.492049890038061 }, { -0.732335083049923, -0.0341252836840602 }, { 0.192183096200302, 0.580343336854431 }, { 0.256170478557119, 0.639157216957949 }, { -0.703212303846621, -0.0317868463626801 }, { 0.3515430820112, 0.224868844202495 }, { -0.722813976459246, -0.0325608519534802 }, { 0.286990265042346, 0.102161459040097 }, { 0.354904620698745, -0.390810675482863 }, { 0.332125880099634, 0.566660263312128 } #endregion }; Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6)); }
private void button1_Click(object sender, EventArgs e) { // Finishes and save any pending changes to the given data dgvAnalysisSource.EndEdit(); if (dgvAnalysisSource.DataSource == null) return; // Creates a matrix from the source data table double[,] sourceMatrix = (dgvAnalysisSource.DataSource as DataTable).ToMatrix(out sourceColumns); int rows = sourceMatrix.GetLength(0); int cols = sourceMatrix.GetLength(1); // Creates a new Simple Descriptive Analysis sda = new DescriptiveAnalysis(sourceMatrix, sourceColumns); sda.Compute(); // Populates statistics overview tab with analysis data dgvDistributionMeasures.DataSource = sda.Measures; IKernel kernel; if (rbGaussian.Checked) { kernel = new Gaussian((double)numSigma.Value); } else { kernel = new Polynomial((int)numDegree.Value, (double)numConstant.Value); } // Get only the input values (exclude the class label indicator column) double[,] data = sourceMatrix.Submatrix(null, startColumn: 0, endColumn: 1); // Get only the associated labels int[] labels = sourceMatrix.GetColumn(2).ToInt32(); // Creates the Kernel Principal Component Analysis of the given source kpca = new KernelPrincipalComponentAnalysis(data, kernel, (AnalysisMethod)cbMethod.SelectedValue); kpca.Center = cbCenter.Checked; // Compute the analysis kpca.Compute(); double[,] result; if (kpca.Components.Count >= 2) { // Perform the transformation of the data using two components result = kpca.Transform(data, 2); } else { result = kpca.Transform(data, 1); result = result.InsertColumn(Matrix.Vector(result.GetLength(0), 0.0)); } // Create a new plot with the original Z column double[,] points = result.InsertColumn(sourceMatrix.GetColumn(2)); // Create output scatter plot outputScatterplot.DataSource = points; CreateScatterplot(graphMapFeature, points); // Create output table dgvProjectionResult.DataSource = new ArrayDataView(points, sourceColumns); dgvReversionSource.DataSource = new ArrayDataView(kpca.Result); // Populates components overview with analysis data dgvFeatureVectors.DataSource = new ArrayDataView(kpca.ComponentMatrix); dgvPrincipalComponents.DataSource = kpca.Components; dgvProjectionComponents.DataSource = kpca.Components; dgvReversionComponents.DataSource = kpca.Components; numComponents.Maximum = kpca.Components.Count; numNeighbor.Maximum = kpca.Result.GetLength(0); numNeighbor.Value = System.Math.Min(10, numNeighbor.Maximum); CreateComponentCumulativeDistributionGraph(graphCurve); CreateComponentDistributionGraph(graphShare); }