コード例 #1
0
        public void RevertTest()
        {
            // Using a linear kernel should be equivalent to standard PCA
            IKernel kernel = new Linear();

            // Create analysis
            KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center);

            // Compute
            target.Compute();

            // Compute image
            double[,] image = target.Transform(data, 2);

            // Compute pre-image
            double[,] preimage = target.Revert(image);

            // Check if pre-image equals the original data
            Assert.IsTrue(Matrix.IsEqual(data, preimage, 0.0001));
        }
コード例 #2
0
        public void RevertTest3()
        {

            string path = @"..\..\..\..\Unit Tests\Accord.Tests.Statistics\Resources\examples.xls";

            // Create a new reader, opening a given path
            ExcelReader reader = new ExcelReader(path);

            // Afterwards, we can query the file for all
            // worksheets within the specified workbook:
            string[] sheets = reader.GetWorksheetList();

            // Finally, we can request an specific sheet:
            DataTable table = reader.GetWorksheet("Wikipedia");

            // Now, we have loaded the Excel file into a DataTable. We
            // can go further and transform it into a matrix to start
            // running other algorithms on it: 

            double[,] matrix = table.ToMatrix();

            IKernel kernel = new Polynomial(2);

            // Create analysis
            KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(matrix,
                kernel, AnalysisMethod.Center, centerInFeatureSpace: true);

            target.Compute();

            double[,] forward = target.Result;

            double[,] reversion = target.Revert(forward);

            Assert.IsTrue(!reversion.HasNaN());
        }
コード例 #3
0
        public void RevertTest2_new_method()
        {
            string path = @"Resources\examples.xls";

            // Create a new reader, opening a given path
            ExcelReader reader = new ExcelReader(path);

            // Afterwards, we can query the file for all
            // worksheets within the specified workbook:
            string[] sheets = reader.GetWorksheetList();

            // Finally, we can request an specific sheet:
            DataTable table = reader.GetWorksheet("Wikipedia");

            // Now, we have loaded the Excel file into a DataTable. We
            // can go further and transform it into a matrix to start
            // running other algorithms on it: 

            double[][] matrix = table.ToArray();

            IKernel kernel = new Gaussian(5);

            // Create analysis
            var target = new KernelPrincipalComponentAnalysis(kernel)
            { 
                Method = PrincipalComponentMethod.Center, 
                Center = true // Center in feature space
            };

            var regression  = target.Learn(matrix);

            double[][] forward = regression.Transform(matrix);

            double[][] reversion = target.Revert(forward);

            Assert.IsTrue(!reversion.HasNaN());
        }