//Protected methods (called by the public methods in parent class)
        protected override void DoTrain(System.Drawing.Bitmap[] charImgs)
        {
            double[][] input = charImgs.Select(img => Converters.ThresholdedBitmapToDoubleArray(img)).ToArray();

            kpca = new KernelPrincipalComponentAnalysis(input, kernel, AnalysisMethod.Center);
            kpca.Compute();
        }
        public void TransformTest()
        {
            // Using a linear kernel should be equivalent to standard PCA
            IKernel kernel = new Linear();

            // Create analysis
            var target = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center);

            // Compute
            target.Compute();

            double[,] actual = target.Transform(data, 2);

            // first inversed.. ?
            double[,] expected = new double[,]
            {
                { -0.827970186,  0.175115307 },
                {  1.77758033,  -0.142857227 },
                { -0.992197494, -0.384374989 },
                { -0.274210416, -0.130417207 },
                { -1.67580142,   0.209498461 },
                { -0.912949103, -0.175282444 },
                {  0.099109437,  0.349824698 },
                {  1.14457216,  -0.046417258 },
                {  0.438046137, -0.017764629 },
                {  1.22382056,   0.162675287 },
            };

            // Verify both are equal with 0.001 tolerance value
            Assert.IsTrue(Matrix.IsEqual(actual, expected, 0.0001));

            // Assert the result equals the transformation of the input
            double[,] result = target.Result;
            double[,] projection = target.Transform(data);
            Assert.IsTrue(Matrix.IsEqual(result, projection, 0.000001));

            Assert.AreEqual(2, target.Eigenvalues.Length);
            Assert.AreEqual(10, target.ComponentMatrix.GetLength(0));
            Assert.AreEqual(2, target.ComponentMatrix.GetLength(1));
        }
        public void TransformTest2()
        {
            // Using a linear kernel should be equivalent to standard PCA
            IKernel kernel = new Linear();

            // Create analysis
            KernelPrincipalComponentAnalysis target =
                new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center);

            // Set the minimum variance threshold to 0.001
            target.Threshold = 0.001;

            // Compute
            target.Compute();

            var r = target.Result;

            double[,] actual = target.Transform(data, 1);

            // first inversed.. ?
            double[,] expected = new double[,]
            {
                { -0.827970186 },
                {  1.77758033  },
                { -0.992197494 },
                { -0.274210416 },
                { -1.67580142  },
                { -0.912949103 },
                {  0.099109437 },
                {  1.14457216  },
                {  0.438046137 },
                {  1.22382056  },
            };

            // Verify both are equal with 0.001 tolerance value
            Assert.IsTrue(Matrix.IsEqual(actual, expected, 0.0001));

            // Assert the result equals the transformation of the input
            double[,] result = target.Result;
            double[,] projection = target.Transform(data);
            Assert.IsTrue(Matrix.IsEqual(result, projection, 0.000001));
        }
        public void RevertTest3()
        {

            string path = @"..\..\..\..\Unit Tests\Accord.Tests.Statistics\Resources\examples.xls";

            // Create a new reader, opening a given path
            ExcelReader reader = new ExcelReader(path);

            // Afterwards, we can query the file for all
            // worksheets within the specified workbook:
            string[] sheets = reader.GetWorksheetList();

            // Finally, we can request an specific sheet:
            DataTable table = reader.GetWorksheet("Wikipedia");

            // Now, we have loaded the Excel file into a DataTable. We
            // can go further and transform it into a matrix to start
            // running other algorithms on it: 

            double[,] matrix = table.ToMatrix();

            IKernel kernel = new Polynomial(2);

            // Create analysis
            KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(matrix,
                kernel, AnalysisMethod.Center, centerInFeatureSpace: true);

            target.Compute();

            double[,] forward = target.Result;

            double[,] reversion = target.Revert(forward);

            Assert.IsTrue(!reversion.HasNaN());
        }
        public void RevertTest()
        {
            // Using a linear kernel should be equivalent to standard PCA
            IKernel kernel = new Linear();

            // Create analysis
            KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center);

            // Compute
            target.Compute();

            // Compute image
            double[,] image = target.Transform(data, 2);

            // Compute pre-image
            double[,] preimage = target.Revert(image);

            // Check if pre-image equals the original data
            Assert.IsTrue(Matrix.IsEqual(data, preimage, 0.0001));
        }
        public void TransformTest_Jagged()
        {
            double[][] sourceMatrix = new double[][]
            {
                new double[] { 2.5,  2.4 },
                new double[] { 0.5,  0.7 },
                new double[] { 2.2,  2.9 },
                new double[] { 1.9,  2.2 },
                new double[] { 3.1,  3.0 },
                new double[] { 2.3,  2.7 },
                new double[] { 2.0,  1.6 },
                new double[] { 1.0,  1.1 },
                new double[] { 1.5,  1.6 },
                new double[] { 1.1,  0.9 }
            };

            // Create a new linear kernel
            IKernel kernel = new Linear();

            // Creates the Kernel Principal Component Analysis of the given data
            var kpca = new KernelPrincipalComponentAnalysis(sourceMatrix, kernel);

            // Compute the Kernel Principal Component Analysis
            kpca.Compute();

            // The following statement throws an exception:
            // An unhandled exception of type 'System.IndexOutOfRangeException' occurred in Accord.Math.dll
            double[] actual1 = kpca.Transform(sourceMatrix[0]);

            double[][] actual = kpca.Transform(sourceMatrix);

            double[][] expected = 
            {
                new double[] { -0.827970186,  0.175115307 },
                new double[] {  1.77758033,  -0.142857227 },
                new double[] { -0.992197494, -0.384374989 },
                new double[] { -0.274210416, -0.130417207 },
                new double[] { -1.67580142,   0.209498461 },
                new double[] { -0.912949103, -0.175282444 },
                new double[] {  0.099109437,  0.349824698 },
                new double[] {  1.14457216,  -0.046417258 },
                new double[] {  0.438046137, -0.017764629 },
                new double[] {  1.22382056,   0.162675287 },
            };

            Assert.IsTrue(Matrix.IsEqual(expected[0], expected[0]));

            // Verify both are equal with 0.001 tolerance value
            Assert.IsTrue(Matrix.IsEqual(actual, expected, 0.0001));

            // Assert the result equals the transformation of the input
            double[,] result = kpca.Result;
            double[,] projection = kpca.Transform(data);
            Assert.IsTrue(Matrix.IsEqual(result, projection, 0.000001));
        }
        public void TransformTest5()
        {
            int element = 10;
            int dimension = 20;

            double[,] data = new double[element, dimension];

            int x = 0;

            for (int i = 0; i < element; i++)
            {
                for (int j = 0; j < dimension; j++)
                    data[i, j] = x;

                x += 10;
            }

            IKernel kernel = new Gaussian(10.0);
            var kpca = new KernelPrincipalComponentAnalysis(data, kernel, AnalysisMethod.Center);

            kpca.Compute();

            double[,] result = kpca.Transform(data, 2);

            double[,] expected = new double[,] 
            {
                { -0.23053882357602, -0.284413654763538 },
                { -0.387883199575312, -0.331485820285834 },
                { -0.422077400361521, -0.11134948984113 },
                { -0.322265008788599, 0.23632015508648 },
                { -0.12013575394419, 0.490928809797139 },
                { 0.120135753938394, 0.490928809796094 },
                { 0.322265008787236, 0.236320155085067 },
                { 0.422077400363969, -0.111349489837512 },
                { 0.38788319957867, -0.331485820278937 },
                { 0.230538823577373, -0.28441365475783 } 
            };

            Assert.IsTrue(result.IsEqual(expected, 1e-10));
        }
        public void learn_whiten_success()
        {
            double[,] data = 
            {
                { 2.5,  2.4 },
                { 0.5,  0.7 },
                { 2.2,  2.9 },
                { 1.9,  2.2 },
                { 3.1,  3.0 },
                { 2.3,  2.7 },
                { 2.0,  1.6 },
                { 1.0,  1.1 },
                { 1.5,  1.6 },
                { 1.1,  0.9 }
            };

            var method = PrincipalComponentMethod.Center; // PrincipalComponentMethod.Standardize
            var pca = new KernelPrincipalComponentAnalysis(new Linear(), method, whiten: true);

            pca.Learn(data);

            double[] eigenvalues = { 1.28402771, 0.0490833989 };
            double[] proportion = eigenvalues.Divide(eigenvalues.Sum());
            double[,] eigenvectors =
            {
                { 0.19940687993951403, -1.1061252858739095 },
                { 0.21626410214440508,  1.0199057073792104 }
            };

            // Everything is alright (up to the 9 decimal places shown in the tutorial)
            // Assert.IsTrue(eigenvectors.IsEqual(pca.ComponentMatrix, rtol: 1e-9));
            Assert.IsTrue(proportion.IsEqual(pca.ComponentProportions, rtol: 1e-9));
            Assert.IsTrue(eigenvalues.IsEqual(pca.Eigenvalues.Divide(data.GetLength(0) - 1), rtol: 1e-5));

            double[,] actual = pca.Transform(data);

            double[][] expected = new double[][]
            {
                new double[] {  0.243560157209023,  -0.263472650637184  },
                new double[] { -0.522902576315494,   0.214938218565977  },
                new double[] {  0.291870144299372,   0.578317788814594  },
                new double[] {  0.0806632088164338,  0.19622137941132   },
                new double[] {  0.492962746459375,  -0.315204397734004  },
                new double[] {  0.268558011864442,   0.263724118751361  },
                new double[] { -0.0291545644762578, -0.526334573603598  },
                new double[] { -0.336693495487974,   0.0698378585807067 },
                new double[] { -0.128858004446015,   0.0267280693333571 },
                new double[] { -0.360005627922904,  -0.244755811482527  } 
            }.Multiply(-1);

            // Everything is correct (up to 8 decimal places)
            Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8));
        }
        public void TransformTest3()
        {
            // Using a linear kernel should be equivalent to standard PCA
            IKernel kernel = new Linear();

            // Create analysis
            KernelPrincipalComponentAnalysis target = new KernelPrincipalComponentAnalysis(data, kernel);

            // Compute
            target.Compute();

            bool thrown = false;
            try
            {
                double[,] actual = target.Transform(data, 11);
            }
            catch
            {
                thrown = true;
            }

            Assert.IsTrue(thrown);
        }
        public void learn_success()
        {
            #region doc_learn_1
            // Reproducing Lindsay Smith's "Tutorial on Principal Component Analysis"
            // using the framework's default method. The tutorial can be found online
            // at http://www.sccg.sk/~haladova/principal_components.pdf

            // Step 1. Get some data
            // ---------------------

            double[][] data = 
            {
                new double[] { 2.5,  2.4 },
                new double[] { 0.5,  0.7 },
                new double[] { 2.2,  2.9 },
                new double[] { 1.9,  2.2 },
                new double[] { 3.1,  3.0 },
                new double[] { 2.3,  2.7 },
                new double[] { 2.0,  1.6 },
                new double[] { 1.0,  1.1 },
                new double[] { 1.5,  1.6 },
                new double[] { 1.1,  0.9 }
            };


            // Step 2. Subtract the mean
            // -------------------------
            //   Note: The framework does this automatically. By default, the framework
            //   uses the "Center" method, which only subtracts the mean. However, it is
            //   also possible to remove the mean *and* divide by the standard deviation
            //   (thus performing the correlation method) by specifying "Standardize"
            //   instead of "Center" as the AnalysisMethod.

            var method = PrincipalComponentMethod.Center; // PrincipalComponentMethod.Standardize


            // Step 3. Compute the covariance matrix
            // -------------------------------------
            //   Note: Accord.NET does not need to compute the covariance
            //   matrix in order to compute PCA. The framework uses the SVD
            //   method which is more numerically stable, but may require
            //   more processing or memory. In order to replicate the tutorial
            //   using covariance matrices, please see the next unit test.

            // Create the analysis using the selected method
            var pca = new KernelPrincipalComponentAnalysis(new Linear(), method);

            // Compute it
            pca.Learn(data);


            // Step 4. Compute the eigenvectors and eigenvalues of the covariance matrix
            // -------------------------------------------------------------------------
            //   Note: Since Accord.NET uses the SVD method rather than the Eigendecomposition
            //   method, the Eigenvalues are computed from the singular values. However, it is
            //   not the Eigenvalues themselves which are important, but rather their proportion:

            // Those are the expected eigenvalues, in descending order:
            double[] eigenvalues = { 1.28402771, 0.0490833989 };

            // And this will be their proportion:
            double[] proportion = eigenvalues.Divide(eigenvalues.Sum());

            
            Assert.IsTrue(proportion.IsEqual(pca.ComponentProportions, rtol: 1e-9));
            Assert.IsTrue(eigenvalues.IsEqual(pca.Eigenvalues.Divide(data.GetLength(0) - 1), rtol: 1e-5));

            // Step 5. Deriving the new data set
            // ---------------------------------

            double[][] actual = pca.Transform(data);

            // transformedData shown in pg. 18
            double[,] expected = new double[,]
            {
                {  0.827970186, -0.175115307 },
                { -1.77758033,   0.142857227 },
                {  0.992197494,  0.384374989 },
                {  0.274210416,  0.130417207 },
                {  1.67580142,  -0.209498461 },
                {  0.912949103,  0.175282444 },
                { -0.099109437, -0.349824698 },
                { -1.14457216,   0.046417258 },
                { -0.438046137,  0.017764629 },
                { -1.22382056,  -0.162675287 },
            }.Multiply(-1);

            // Everything is correct (up to 8 decimal places)
            Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8));

            // Finally, we can project all the data
            double[][] output1 = pca.Transform(data);

            // Or just its first components by setting 
            // NumberOfOutputs to the desired components:
            pca.NumberOfOutputs = 1;

            // And then calling transform again:
            double[][] output2 = pca.Transform(data);

            // We can also limit to 80% of explained variance:
            pca.ExplainedVariance = 0.8;

            // And then call transform again:
            double[][] output3 = pca.Transform(data);
            #endregion

            actual = pca.Transform(data);

            // transformedData shown in pg. 18
            expected = new double[,]
            {
                {  0.827970186 },
                { -1.77758033, },
                {  0.992197494 },
                {  0.274210416 },
                {  1.67580142, },
                {  0.912949103 },
                { -0.099109437 },
                { -1.14457216, },
                { -0.438046137 },
                { -1.22382056, },
            }.Multiply(-1);

            // Everything is correct (up to 8 decimal places)
            Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8));


            // Create the analysis using the selected method
            pca = new KernelPrincipalComponentAnalysis()
            {
                Kernel = new Linear(),
                Method = method,
                NumberOfOutputs = 1
            };

            // Compute it
            pca.Learn(data);

            actual = pca.Transform(data);

            // transformedData shown in pg. 18
            expected = new double[,]
            {
                {  0.827970186 },
                { -1.77758033, },
                {  0.992197494 },
                {  0.274210416 },
                {  1.67580142, },
                {  0.912949103 },
                { -0.099109437 },
                { -1.14457216, },
                { -0.438046137 },
                { -1.22382056, },
            }.Multiply(-1);

            // Everything is correct (up to 8 decimal places)
            Assert.IsTrue(expected.IsEqual(actual, atol: 1e-8));

        }
        public void kernel_matrix_success()
        {
            var actual = new KernelPrincipalComponentAnalysis(new Linear(), PrincipalComponentMethod.KernelMatrix);
            var expected = new KernelPrincipalComponentAnalysis(data, new Linear(), AnalysisMethod.Standardize);

            Linear kernel = new Linear();
            double[][] K = kernel.ToJagged(data.ZScores().ToJagged());

            // Compute
            actual.Learn(K);
            expected.Compute();

            // Transform
            double[][] actualTransform = actual.Transform(K);
            double[][] expectedTransform1 = expected.Transform(data).ToJagged();
            double[][] expectedTransform2 = expected.Transform(data.ToJagged());


            // Verify both are equal with 0.01 tolerance value
            Assert.IsTrue(Matrix.IsEqual(actualTransform, expectedTransform1, 0.01));
            Assert.IsTrue(Matrix.IsEqual(actualTransform, expectedTransform2, 0.01));
        }
        public void transform_more_columns_than_samples_new_interface()
        {
            // Lindsay's tutorial data
            double[,] datat = data.Transpose();

            var target = new KernelPrincipalComponentAnalysis(new Linear());

            // Compute
            target.Learn(datat);

            // Transform
            double[,] actual = target.Transform(datat);

            // Assert the scores equals the transformation of the input
            double[,] result = target.Result;

            double[,] expected = new double[,]
            {
                {  0.50497524691810358 },
                { -0.504975246918104  }
            }.Multiply(-1);

            Assert.IsTrue(Matrix.IsEqual(expected, actual, 0.01));
            Assert.IsTrue(Matrix.IsEqual(result, actual, 0.01));
        }
        public void RevertTest2_new_method()
        {
            string path = @"Resources\examples.xls";

            // Create a new reader, opening a given path
            ExcelReader reader = new ExcelReader(path);

            // Afterwards, we can query the file for all
            // worksheets within the specified workbook:
            string[] sheets = reader.GetWorksheetList();

            // Finally, we can request an specific sheet:
            DataTable table = reader.GetWorksheet("Wikipedia");

            // Now, we have loaded the Excel file into a DataTable. We
            // can go further and transform it into a matrix to start
            // running other algorithms on it: 

            double[][] matrix = table.ToArray();

            IKernel kernel = new Gaussian(5);

            // Create analysis
            var target = new KernelPrincipalComponentAnalysis(kernel)
            { 
                Method = PrincipalComponentMethod.Center, 
                Center = true // Center in feature space
            };

            var regression  = target.Learn(matrix);

            double[][] forward = regression.Transform(matrix);

            double[][] reversion = target.Revert(forward);

            Assert.IsTrue(!reversion.HasNaN());
        }
        public void test_kernlab_new_method()
        {
            // Tested against R's kernlab

            // test <-   c(16, 117, 94, 132, 13, 73, 68, 129, 91, 50, 56, 12, 145, 105, 35, 53, 38, 51, 85, 116)
            int[] test = { 15, 116, 93, 131, 12, 72, 67, 128, 90, 49, 55, 11, 144, 104, 34, 52, 37, 50, 84, 115 };

            // data(iris)
            double[,] iris = create_iris();


            // kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),features=2)
            var data = iris.Remove(test, new[] { 4 });
            var kernel = new Gaussian() { Gamma = 1 };
            var kpc = new KernelPrincipalComponentAnalysis(kernel);

            kpc.NumberOfOutputs = 2;
            var transform = kpc.Learn(data);

            var rotated = kpc.Result;
            var pcv = kpc.ComponentMatrix;
            var eig = kpc.Eigenvalues;

            double[] expected_eig = { 28.542404060412132, 15.235596653653861 };
            double[,] expected_pcv = expected_r();

            Assert.IsTrue(Matrix.IsEqual(expected_eig, eig, 1e-10));
            Assert.IsTrue(Matrix.IsEqual(expected_pcv, pcv, 1e-10));

            double[,] irisSubset = iris_sub();

            var testing = iris.Submatrix(test, new[] { 0, 1, 2, 3 });

            Assert.IsTrue(Matrix.IsEqual(irisSubset, testing));

            double[,] expectedProjection = expected_p();

            double[,] proj = kpc.Transform(testing);
            Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6));

            double[][] proj2 = kpc.Transform(testing.ToJagged());
            Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6));

            double[][] proj3 = transform.Transform(testing.ToJagged());
            Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6));
        }
Beispiel #15
0
        /// <summary>
        ///   Launched when the user clicks the "Run analysis" button.
        /// </summary>
        /// 
        private void btnCompute_Click(object sender, EventArgs e)
        {
            // Save any pending changes 
            dgvAnalysisSource.EndEdit();

            if (dgvAnalysisSource.DataSource == null)
            {
                MessageBox.Show("Please load some data using File > Open!");
                return;
            }

            // Create a matrix from the source data table
            double[,] sourceMatrix = (dgvAnalysisSource.DataSource as DataTable).ToMatrix(out columnNames);

            int rows = sourceMatrix.GetLength(0);
            int cols = sourceMatrix.GetLength(1);


            // Create and compute a new Simple Descriptive Analysis
            sda = new DescriptiveAnalysis(sourceMatrix, columnNames);

            sda.Compute();

            // Show the descriptive analysis on the screen
            dgvDistributionMeasures.DataSource = sda.Measures;


            // Create the kernel function
            IKernel kernel = createKernel();


            // Get the input values (the two first columns)
            double[,] inputs = sourceMatrix.GetColumns(0, 1);

            // Get only the associated labels (last column)
            int[] outputs = sourceMatrix.GetColumn(2).ToInt32();


            AnalysisMethod method = (AnalysisMethod)cbMethod.SelectedValue;

            // Creates the Kernel Principal Component Analysis of the given source
            kpca = new KernelPrincipalComponentAnalysis(inputs, kernel, method);

            // Whether to center in space
            kpca.Center = cbCenter.Checked;


            kpca.Compute(); // Finally, compute the analysis!


            
            double[,] result;

            if (kpca.Components.Count >= 2)
            {
                // Perform the transformation of the data using two components 
                result = kpca.Transform(inputs, 2);
            }
            else
            {
                result = kpca.Transform(inputs, 1);
                result = result.InsertColumn(Matrix.Vector(result.GetLength(0), 0.0));
            }

            // Create a new plot with the original Z column
            double[,] points = result.InsertColumn(sourceMatrix.GetColumn(2));

            // Create output scatter plot
            outputScatterplot.DataSource = points;
            CreateScatterplot(graphMapFeature, points);

            // Create output table
            dgvProjectionResult.DataSource = new ArrayDataView(points, columnNames);
            dgvReversionSource.DataSource = new ArrayDataView(kpca.Result);


            // Populates components overview with analysis data
            dgvFeatureVectors.DataSource = new ArrayDataView(kpca.ComponentMatrix);
            dgvPrincipalComponents.DataSource = kpca.Components;
            dgvProjectionComponents.DataSource = kpca.Components;
            dgvReversionComponents.DataSource = kpca.Components;
            cumulativeView.DataSource = kpca.Components;
            distributionView.DataSource = kpca.Components;

            numComponents.Maximum = kpca.Components.Count;
            numNeighbor.Maximum = kpca.Result.GetLength(0);
            numNeighbor.Value = System.Math.Min(10, numNeighbor.Maximum);

            lbStatus.Text = "Good! Feel free to browse the other tabs to see what has been found.";
        }
        public void TransformTest4()
        {
            // Tested against R's kernlab

            // test <-   c(16, 117, 94, 132, 13, 73, 68, 129, 91, 50, 56, 12, 145, 105, 35, 53, 38, 51, 85, 116)
            int[] test = { 15, 116, 93, 131, 12, 72, 67, 128, 90, 49, 55, 11, 144, 104, 34, 52, 37, 50, 84, 115 };

            // data(iris)
            double[,] iris =
            {
                #region Fisher's iris dataset
                { 5.1, 3.5,  1.4, 0.2, 0 },
                { 4.9, 3.0,  1.4, 0.2, 0 },
                { 4.7, 3.2,  1.3, 0.2, 0 },
                { 4.6, 3.1,  1.5, 0.2, 0 },
                { 5.0, 3.6,  1.4, 0.2, 0 },
                { 5.4, 3.9,  1.7, 0.4, 0 },
                { 4.6, 3.4,  1.4, 0.3, 0 },
                { 5.0, 3.4,  1.5, 0.2, 0 },
                { 4.4, 2.9,  1.4, 0.2, 0 },
                { 4.9, 3.1,  1.5, 0.1, 0 },
                { 5.4, 3.7,  1.5, 0.2, 0 },
                { 4.8, 3.4,  1.6, 0.2, 0 },
                { 4.8, 3.0,  1.4, 0.1, 0 },
                { 4.3, 3.0,  1.1, 0.1, 0 },
                { 5.8, 4.0,  1.2, 0.2, 0 },
                { 5.7, 4.4,  1.5, 0.4, 0 },
                { 5.4, 3.9,  1.3, 0.4, 0 },
                { 5.1, 3.5,  1.4, 0.3, 0 },
                { 5.7, 3.8,  1.7, 0.3, 0 },
                { 5.1, 3.8,  1.5, 0.3, 0 },
                { 5.4, 3.4,  1.7, 0.2, 0 },
                { 5.1, 3.7,  1.5, 0.4, 0 },
                { 4.6, 3.6,  1.0, 0.2, 0 },
                { 5.1, 3.3,  1.7, 0.5, 0 },
                { 4.8, 3.4,  1.9, 0.2, 0 },
                { 5.0, 3.0,  1.6, 0.2, 0 },
                { 5.0, 3.4,  1.6, 0.4, 0 },
                { 5.2, 3.5,  1.5, 0.2, 0 },
                { 5.2, 3.4,  1.4, 0.2, 0 },
                { 4.7, 3.2,  1.6, 0.2, 0 },
                { 4.8, 3.1,  1.6, 0.2, 0 },
                { 5.4, 3.4,  1.5, 0.4, 0 },
                { 5.2, 4.1,  1.5, 0.1, 0 },
                { 5.5, 4.2,  1.4, 0.2, 0 },
                { 4.9, 3.1,  1.5, 0.2, 0 },
                { 5.0, 3.2,  1.2, 0.2, 0 },
                { 5.5, 3.5,  1.3, 0.2, 0 },
                { 4.9, 3.6,  1.4, 0.1, 0 },
                { 4.4, 3.0,  1.3, 0.2, 0 },
                { 5.1, 3.4,  1.5, 0.2, 0 },
                { 5.0, 3.5,  1.3, 0.3, 0 },
                { 4.5, 2.3,  1.3, 0.3, 0 },
                { 4.4, 3.2,  1.3, 0.2, 0 },
                { 5.0, 3.5,  1.6, 0.6, 0 },
                { 5.1, 3.8,  1.9, 0.4, 0 },
                { 4.8, 3.0,  1.4, 0.3, 0 },
                { 5.1, 3.8,  1.6, 0.2, 0 },
                { 4.6, 3.2,  1.4, 0.2, 0 },
                { 5.3, 3.7,  1.5, 0.2, 0 },
                { 5.0, 3.3,  1.4, 0.2, 0 },
                { 7.0, 3.2,  4.7, 1.4, 1 },
                { 6.4, 3.2,  4.5, 1.5, 1 },
                { 6.9, 3.1,  4.9, 1.5, 1 },
                { 5.5, 2.3,  4.0, 1.3, 1 },
                { 6.5, 2.8,  4.6, 1.5, 1 },
                { 5.7, 2.8,  4.5, 1.3, 1 },
                { 6.3, 3.3,  4.7, 1.6, 1 },
                { 4.9, 2.4,  3.3, 1.0, 1 },
                { 6.6, 2.9,  4.6, 1.3, 1 },
                { 5.2, 2.7,  3.9, 1.4, 1 },
                { 5.0, 2.0,  3.5, 1.0, 1 },
                { 5.9, 3.0,  4.2, 1.5, 1 },
                { 6.0, 2.2,  4.0, 1.0, 1 },
                { 6.1, 2.9,  4.7, 1.4, 1 },
                { 5.6, 2.9,  3.6, 1.3, 1 },
                { 6.7, 3.1,  4.4, 1.4, 1 },
                { 5.6, 3.0,  4.5, 1.5, 1 },
                { 5.8, 2.7,  4.1, 1.0, 1 },
                { 6.2, 2.2,  4.5, 1.5, 1 },
                { 5.6, 2.5,  3.9, 1.1, 1 },
                { 5.9, 3.2,  4.8, 1.8, 1 },
                { 6.1, 2.8,  4.0, 1.3, 1 },
                { 6.3, 2.5,  4.9, 1.5, 1 },
                { 6.1, 2.8,  4.7, 1.2, 1 },
                { 6.4, 2.9,  4.3, 1.3, 1 },
                { 6.6, 3.0,  4.4, 1.4, 1 },
                { 6.8, 2.8,  4.8, 1.4, 1 },
                { 6.7, 3.0,  5.0, 1.7, 1 },
                { 6.0, 2.9,  4.5, 1.5, 1 },
                { 5.7, 2.6,  3.5, 1.0, 1 },
                { 5.5, 2.4,  3.8, 1.1, 1 },
                { 5.5, 2.4,  3.7, 1.0, 1 },
                { 5.8, 2.7,  3.9, 1.2, 1 },
                { 6.0, 2.7,  5.1, 1.6, 1 },
                { 5.4, 3.0,  4.5, 1.5, 1 },
                { 6.0, 3.4,  4.5, 1.6, 1 },
                { 6.7, 3.1,  4.7, 1.5, 1 },
                { 6.3, 2.3,  4.4, 1.3, 1 },
                { 5.6, 3.0,  4.1, 1.3, 1 },
                { 5.5, 2.5,  4.0, 1.3, 1 },
                { 5.5, 2.6,  4.4, 1.2, 1 },
                { 6.1, 3.0,  4.6, 1.4, 1 },
                { 5.8, 2.6,  4.0, 1.2, 1 },
                { 5.0, 2.3,  3.3, 1.0, 1 },
                { 5.6, 2.7,  4.2, 1.3, 1 },
                { 5.7, 3.0,  4.2, 1.2, 1 },
                { 5.7, 2.9,  4.2, 1.3, 1 },
                { 6.2, 2.9,  4.3, 1.3, 1 },
                { 5.1, 2.5,  3.0, 1.1, 1 },
                { 5.7, 2.8,  4.1, 1.3, 1 },
                { 6.3, 3.3,  6.0, 2.5, 2 },
                { 5.8, 2.7,  5.1, 1.9, 2 },
                { 7.1, 3.0,  5.9, 2.1, 2 },
                { 6.3, 2.9,  5.6, 1.8, 2 },
                { 6.5, 3.0,  5.8, 2.2, 2 },
                { 7.6, 3.0,  6.6, 2.1, 2 },
                { 4.9, 2.5,  4.5, 1.7, 2 },
                { 7.3, 2.9,  6.3, 1.8, 2 },
                { 6.7, 2.5,  5.8, 1.8, 2 },
                { 7.2, 3.6,  6.1, 2.5, 2 },
                { 6.5, 3.2,  5.1, 2.0, 2 },
                { 6.4, 2.7,  5.3, 1.9, 2 },
                { 6.8, 3.0,  5.5, 2.1, 2 },
                { 5.7, 2.5,  5.0, 2.0, 2 },
                { 5.8, 2.8,  5.1, 2.4, 2 },
                { 6.4, 3.2,  5.3, 2.3, 2 },
                { 6.5, 3.0,  5.5, 1.8, 2 },
                { 7.7, 3.8,  6.7, 2.2, 2 },
                { 7.7, 2.6,  6.9, 2.3, 2 },
                { 6.0, 2.2,  5.0, 1.5, 2 },
                { 6.9, 3.2,  5.7, 2.3, 2 },
                { 5.6, 2.8,  4.9, 2.0, 2 },
                { 7.7, 2.8,  6.7, 2.0, 2 },
                { 6.3, 2.7,  4.9, 1.8, 2 },
                { 6.7, 3.3,  5.7, 2.1, 2 },
                { 7.2, 3.2,  6.0, 1.8, 2 },
                { 6.2, 2.8,  4.8, 1.8, 2 },
                { 6.1, 3.0,  4.9, 1.8, 2 },
                { 6.4, 2.8,  5.6, 2.1, 2 },
                { 7.2, 3.0,  5.8, 1.6, 2 },
                { 7.4, 2.8,  6.1, 1.9, 2 },
                { 7.9, 3.8,  6.4, 2.0, 2 },
                { 6.4, 2.8,  5.6, 2.2, 2 },
                { 6.3, 2.8,  5.1, 1.5, 2 },
                { 6.1, 2.6,  5.6, 1.4, 2 },
                { 7.7, 3.0,  6.1, 2.3, 2 },
                { 6.3, 3.4,  5.6, 2.4, 2 },
                { 6.4, 3.1,  5.5, 1.8, 2 },
                { 6.0, 3.0,  4.8, 1.8, 2 },
                { 6.9, 3.1,  5.4, 2.1, 2 },
                { 6.7, 3.1,  5.6, 2.4, 2 },
                { 6.9, 3.1,  5.1, 2.3, 2 },
                { 5.8, 2.7,  5.1, 1.9, 2 },
                { 6.8, 3.2,  5.9, 2.3, 2 },
                { 6.7, 3.3,  5.7, 2.5, 2 },
                { 6.7, 3.0,  5.2, 2.3, 2 },
                { 6.3, 2.5,  5.0, 1.9, 2 },
                { 6.5, 3.0,  5.2, 2.0, 2 },
                { 6.2, 3.4,  5.4, 2.3, 2 },
                { 5.9, 3.0,  5.1, 1.8, 2 },
                #endregion
            };


            // kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",kpar=list(sigma=0.2),features=2)
            var data = iris.Remove(test, new[] { 4 });
            var kernel = new Gaussian() { Gamma = 1 };
            var kpc = new KernelPrincipalComponentAnalysis(data, kernel);

            kpc.Compute(2);

            var rotated = kpc.Result;
            var pcv = kpc.ComponentMatrix;
            var eig = kpc.Eigenvalues;

            double[] expected_eig = { 28.542404060412132, 15.235596653653861 };
            double[,] expected_pcv = 
            {
                #region expected PCV without R's / m normalization
                { -0.0266876243479222, -0.00236424647855596 },
                { -0.0230827502249994, -0.00182207284533632 },
                { -0.0235846044938792, -0.00184417084258023 },
                { -0.0219741114149703, -0.00162806197434679 },
                { -0.0262369254935451, -0.00228351232176506 },
                { -0.0194129527129315, -0.00128157547584046 },
                { -0.0233710173690426, -0.00183018780267092 },
                { -0.0270621345426091, -0.00244551460941156 },
                { -0.01660360115437, -0.000759995006404066 },
                { -0.0241543595644871, -0.00200028851593623 },
                { -0.0229396684027426, -0.00178791975184668 },
                { -0.0141003945759371, -0.000349601250510858 },
                { -0.0122801944616023, -0.00011745003303124 },
                { -0.0195599909514198, -0.00123924882430174 },
                { -0.0267285199984888, -0.00237835151986576 },
                { -0.0164051441608544, -0.000826433392421186 },
                { -0.0241385103747907, -0.00196921837902471 },
                { -0.0228276819006861, -0.00190280719845395 },
                { -0.0250090125071634, -0.00212322482498387 },
                { -0.018268574949505, -0.00103729989327242 },
                { -0.0239555047501124, -0.00216590896337712 },
                { -0.0218837974825259, -0.00180921340210779 },
                { -0.0228699114274226, -0.00189079843025579 },
                { -0.0262414571955617, -0.00238666692022459 },
                { -0.02628286882499, -0.00232756740052467 },
                { -0.0261369413490628, -0.00229661111040973 },
                { -0.0237893959503383, -0.00195315162891338 },
                { -0.0237354902927562, -0.00197089686864334 },
                { -0.0234996712936547, -0.0019545398678434 },
                { -0.0179796342021205, -0.00100004281923827 },
                { -0.0143171193045046, -0.000421228427584423 },
                { -0.0241702773143143, -0.00196078350204665 },
                { -0.0215781675204649, -0.00158425565875557 },
                { -0.0174405137049866, -0.000872162100068597 },
                { -0.0268982927662575, -0.00242925852652081 },
                { -0.0261930727206913, -0.00227548913089953 },
                { -0.00807266421494459, 0.000505384268295841 },
                { -0.0189832707329651, -0.00111618515851182 },
                { -0.023789443724428, -0.00203239968623136 },
                { -0.0201457716377357, -0.00150731437393246 },
                { -0.0226387870826046, -0.00174799717649726 },
                { -0.0237772220904885, -0.00192536309172948 },
                { -0.0227864577886965, -0.00172757669197999 },
                { -0.0241368046325238, -0.00197147776349598 },
                { 0.0162307596401467, -0.00932217153629181 },
                { 0.00924104683890504, -0.0371256298132236 },
                { 0.0172460604733757, -0.00601678602419225 },
                { 0.0164784470762724, -0.00012129053123478 },
                { 0.00225808467595593, -0.0155701555363185 },
                { 0.0152659569368524, -0.00695503994803249 },
                { 0.00795619200816849, -0.034188555904496 },
                { 0.00255986394744671, -0.0156335839305463 },
                { 0.0157735235376026, -0.0339711483141172 },
                { 0.00860192955815661, -0.0310332456913026 },
                { 0.0188286198627367, -0.0143146603067418 },
                { 0.0081385823965042, -0.0358483794263587 },
                { 0.0131727085950618, -0.00748671161967017 },
                { 0.0150373592446138, -0.0269773780381651 },
                { 0.0126779242124717, -0.0162727482334416 },
                { 0.00983265072294127, -0.0416039968698012 },
                { 0.0162669562079483, -0.000151449934923387 },
                { 0.0137854766363786, -0.0375070307423622 },
                { 0.0170058660389757, -0.0184237621007135 },
                { 0.0154946725649067, -0.0227889410670457 },
                { 0.014708096275464, -0.011169199019916 },
                { 0.0135541309647514, 0.00627293040317239 },
                { 0.0153982178833786, 0.0228745884070871 },
                { 0.0186116855914761, -0.0238281923214434 },
                { 0.00661605660296714, -0.0332168101819555 },
                { 0.00812230548276198, -0.0380947707628449 },
                { 0.00704157480127114, -0.0353293378234606 },
                { 0.0118813500247593, -0.0433955442329169 },
                { 0.0168403649935284, 0.00717417511929008 },
                { 0.0144885311444922, -0.0128879186387195 },
                { 0.0148385454088314, 0.00481616750741218 },
                { 0.0127847825706042, -0.0211295878510692 },
                { 0.0126141523297424, -0.0394948238730571 },
                { 0.0105804278587419, -0.0411832808826231 },
                { 0.0185081272399827, -0.0181339486962481 },
                { 0.0124993892884636, -0.0434407731971394 },
                { 0.0135227934497893, -0.0415894662412569 },
                { 0.0136028421755366, -0.0388446289823116 },
                { 0.0144604273990706, -0.0404041262573942 },
                { 0.0165646866155949, -0.0294021220435322 },
                { 0.00146858312783178, -0.0134333124454357 },
                { 0.0137785343752508, -0.0429733697468562 },
                { 0.00510997410924024, 0.0292833047881736 },
                { 0.014720812085274, 0.00944264118212137 },
                { 0.00598583015620509, 0.038742545754176 },
                { 0.0125544895333347, 0.0349170237345097 },
                { 0.00140911493699792, 0.0164126558963803 },
                { 0.00546764790022381, -0.0140904440836446 },
                { 0.0029496609416271, 0.0249945804373137 },
                { 0.00769932014045035, 0.0313261912102264 },
                { 0.00266139821119332, 0.0231665860038695 },
                { 0.0147368620502789, 0.0315131740192214 },
                { 0.0149582869669828, 0.0314622232024109 },
                { 0.0106818628524054, 0.0443273862959601 },
                { 0.0123400540017047, 0.00422397833506881 },
                { 0.0101542521522688, 0.0157643916651046 },
                { 0.000660568495239385, 0.0087957765410289 },
                { 0.000634971613911479, 0.00896839373841372 },
                { 0.0119909422310846, -0.0019235494568038 },
                { 0.00742254354227651, 0.0421145349479265 },
                { 0.0130658707704511, 0.000658712215109605 },
                { 0.00103199141821948, 0.0130131637684367 },
                { 0.0180388007633923, 0.0112135357385706 },
                { 0.00879897568153878, 0.0428371609763469 },
                { 0.00466754803065601, 0.0321456973019424 },
                { 0.0188135431637204, 0.00458127473828957 },
                { 0.0184728744733845, 0.00843677964296344 },
                { 0.0055676853191067, 0.0305087649038716 },
                { 0.0033635667326866, 0.026834775073324 },
                { 0.0108405706484462, 0.0394739066547236 },
                { 0.0172770225385115, 0.0124967454210229 },
                { 0.0100507351970463, 0.0166565450918105 },
                { 0.00209404741665691, 0.0205532162586405 },
                { 0.0078782378323636, 0.0341148825697675 },
                { 0.0132731813046484, 0.0368540207320806 },
                { 0.0182550250587539, 0.000797957664175355 },
                { 0.0102561686092287, 0.0420705939254378 },
                { 0.00857331992305152, 0.0423810139397453 },
                { 0.00964648674506066, 0.0337591223497657 },
                { 0.014720812085274, 0.00944264118212137 },
                { 0.00659947194015947, 0.0404655648392282 },
                { 0.011337029514041, 0.0378339231578959 },
                { 0.0154602034267052, 0.0153085911335171 },
                { 0.0152371977428677, 0.0355309408870963 },
                { 0.0096520854263212, 0.0316677099444034 },
                { 0.016280981143395, 0.011860068380509 } 
#endregion
            };

            Assert.IsTrue(Matrix.IsEqual(expected_eig, eig, 1e-10));
            Assert.IsTrue(Matrix.IsEqual(expected_pcv, pcv, 1e-10));

            double[,] irisSubset =
            {
                #region Iris subset for testing
                { 5.7,  4.4,  1.5,  0.4 },
                { 6.5,  3.0,  5.5,  1.8 },
                { 5.0,  2.3,  3.3,  1.0 },
                { 7.9,  3.8,  6.4,  2.0 },
                { 4.8,  3.0,  1.4,  0.1 },
                { 6.3,  2.5,  4.9,  1.5 },
                { 5.8,  2.7,  4.1,  1.0 },
                { 6.4,  2.8,  5.6,  2.1 },
                { 5.5,  2.6,  4.4,  1.2 },
                { 5.0,  3.3,  1.4,  0.2 },
                { 5.7,  2.8,  4.5,  1.3 },
                { 4.8,  3.4,  1.6,  0.2 },
                { 6.7,  3.3,  5.7,  2.5 },
                { 6.5,  3.0,  5.8,  2.2 },
                { 4.9,  3.1,  1.5,  0.2 },
                { 6.9,  3.1,  4.9,  1.5 },
                { 4.9,  3.6,  1.4,  0.1 },
                { 7.0,  3.2,  4.7,  1.4 },
                { 5.4,  3.0,  4.5,  1.5 },
                { 6.4,  3.2,  5.3,  2.3 },
                #endregion
            };

            var testing = iris.Submatrix(test, new[] { 0, 1, 2, 3 });

            Assert.IsTrue(Matrix.IsEqual(irisSubset, testing));


            double[,] proj = kpc.Transform(testing);

            double[,] expectedProjection =
            {
                #region expected projection without R's /m normalization
                { -0.262045246354652, 0.00522592803297944 },
                { 0.379100878015288, 0.588655883281293 },
                { 0.071459976634984, -0.256289120689712 },
                { 0.0208479105625222, 0.139976227370984 },
                { -0.634360697174036, -0.0253624940325211 },
                { 0.467841054198416, 0.0142078237631541 },
                { 0.3464723948387, -0.62695357333265 },
                { 0.327328144102457, 0.603762286061834 },
                { 0.351964514241981, -0.539035845068089 },
                { -0.759054821003877, -0.035920361137046 },
                { 0.449638018323254, -0.492049890038061 },
                { -0.732335083049923, -0.0341252836840602 },
                { 0.192183096200302, 0.580343336854431 },
                { 0.256170478557119, 0.639157216957949 },
                { -0.703212303846621, -0.0317868463626801 },
                { 0.3515430820112, 0.224868844202495 },
                { -0.722813976459246, -0.0325608519534802 },
                { 0.286990265042346, 0.102161459040097 },
                { 0.354904620698745, -0.390810675482863 },
                { 0.332125880099634, 0.566660263312128 } 
                #endregion
            };

            Assert.IsTrue(expectedProjection.IsEqual(proj, 1e-6));

        }
Beispiel #17
0
        private void button1_Click(object sender, EventArgs e)
        {
            // Finishes and save any pending changes to the given data
            dgvAnalysisSource.EndEdit();

            if (dgvAnalysisSource.DataSource == null) return;

            // Creates a matrix from the source data table
            double[,] sourceMatrix = (dgvAnalysisSource.DataSource as DataTable).ToMatrix(out sourceColumns);

            int rows = sourceMatrix.GetLength(0);
            int cols = sourceMatrix.GetLength(1);


            // Creates a new Simple Descriptive Analysis
            sda = new DescriptiveAnalysis(sourceMatrix, sourceColumns);

            sda.Compute();

            // Populates statistics overview tab with analysis data
            dgvDistributionMeasures.DataSource = sda.Measures;


            IKernel kernel;
            if (rbGaussian.Checked)
            {
                kernel = new Gaussian((double)numSigma.Value);
            }
            else
            {
                kernel = new Polynomial((int)numDegree.Value, (double)numConstant.Value);
            }


            // Get only the input values (exclude the class label indicator column)
            double[,] data = sourceMatrix.Submatrix(null, startColumn: 0, endColumn: 1);

            // Get only the associated labels
            int[] labels = sourceMatrix.GetColumn(2).ToInt32();


            // Creates the Kernel Principal Component Analysis of the given source
            kpca = new KernelPrincipalComponentAnalysis(data, kernel,
                (AnalysisMethod)cbMethod.SelectedValue);

            kpca.Center = cbCenter.Checked;

            // Compute the analysis
            kpca.Compute();


            
            double[,] result;

            if (kpca.Components.Count >= 2)
            {
                // Perform the transformation of the data using two components 
                result = kpca.Transform(data, 2);
            }
            else
            {
                result = kpca.Transform(data, 1);
                result = result.InsertColumn(Matrix.Vector(result.GetLength(0), 0.0));
            }

            // Create a new plot with the original Z column
            double[,] points = result.InsertColumn(sourceMatrix.GetColumn(2));

            // Create output scatter plot
            outputScatterplot.DataSource = points;
            CreateScatterplot(graphMapFeature, points);

            // Create output table
            dgvProjectionResult.DataSource = new ArrayDataView(points, sourceColumns);
            dgvReversionSource.DataSource = new ArrayDataView(kpca.Result);


            // Populates components overview with analysis data
            dgvFeatureVectors.DataSource = new ArrayDataView(kpca.ComponentMatrix);
            dgvPrincipalComponents.DataSource = kpca.Components;

            dgvProjectionComponents.DataSource = kpca.Components;
            dgvReversionComponents.DataSource = kpca.Components;

            numComponents.Maximum = kpca.Components.Count;
            numNeighbor.Maximum = kpca.Result.GetLength(0);
            numNeighbor.Value = System.Math.Min(10, numNeighbor.Maximum);

            CreateComponentCumulativeDistributionGraph(graphCurve);
            CreateComponentDistributionGraph(graphShare);

        }