Esempio n. 1
0
        public void TestRegression()
        {
            FileInfo rawFile = TEMP_DIR.CreateFile("simple.csv");
            FileInfo egaFile = TEMP_DIR.CreateFile("simple.ega");
            FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv");

            FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile);
            FileUtil.CopyResource("Encog.Resources.simple-r.ega", egaFile);

            EncogAnalyst analyst = new EncogAnalyst();
            analyst.Load(egaFile);

            analyst.ExecuteTask("task-full");

            ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English);
            while (csv.Next())
            {
                double diff = Math.Abs(csv.GetDouble(2) - csv.GetDouble(4));
                Assert.IsTrue(diff < 1.5);
            }

            Assert.AreEqual(4, analyst.Script.Fields.Length);
            Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count);

            csv.Close();
        }
        public void TestClassification()
        {
            FileInfo rawFile = TEMP_DIR.CreateFile("simple.csv");
            FileInfo egaFile = TEMP_DIR.CreateFile("simple.ega");
            FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv");

            FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile);
            FileUtil.CopyResource("Encog.Resources.simple-c.ega", egaFile);

            EncogAnalyst analyst = new EncogAnalyst();
            analyst.AddAnalystListener(new ConsoleAnalystListener());
            analyst.Load(egaFile);

            analyst.ExecuteTask("task-full");

            ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English);
            while (csv.Next())
            {
                Assert.AreEqual(csv.Get(3), csv.Get(4));
            }

            Assert.AreEqual(4, analyst.Script.Fields.Length);
            Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count);

            csv.Close();
        }
Esempio n. 3
0
        /// <summary>
        /// Load the specified financial data. 
        /// </summary>
        /// <param name="ticker">The ticker symbol to load.</param>
        /// <param name="dataNeeded">The financial data needed.</param>
        /// <param name="from">The beginning date to load data from.</param>
        /// <param name="to">The ending date to load data to.</param>
        /// <returns>A collection of LoadedMarketData objects that represent the data
        /// loaded.</returns>
        public ICollection<LoadedMarketData> Load(TickerSymbol ticker,
                                                  IList<MarketDataType> dataNeeded, DateTime from,
                                                  DateTime to)
        {
            ICollection<LoadedMarketData> result =
                new List<LoadedMarketData>();
            Uri url = BuildURL(ticker, from, to);
            WebRequest http = WebRequest.Create(url);
            var response = (HttpWebResponse) http.GetResponse();

            using (Stream istream = response.GetResponseStream())
            {
                var csv = new ReadCSV(istream, true, CSVFormat.DecimalPoint);

                while (csv.Next())
                {
                    DateTime date = csv.GetDate("date");
                    double adjClose = csv.GetDouble("adj close");
                    double open = csv.GetDouble("open");
                    double close = csv.GetDouble("close");
                    double high = csv.GetDouble("high");
                    double low = csv.GetDouble("low");
                    double volume = csv.GetDouble("volume");

                    var data =
                        new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.AdjustedClose, adjClose);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.Close, close);
                    data.SetData(MarketDataType.High, high);
                    data.SetData(MarketDataType.Low, low);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.Volume, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return result;
        }
        /// <summary>
        ///     Process and balance the data.
        /// </summary>
        /// <param name="outputFile">The output file to write data to.</param>
        /// <param name="targetField"></param>
        /// <param name="countPer">The desired count per class.</param>
        public void Process(FileInfo outputFile, int targetField,
                            int countPer)
        {
            ValidateAnalyzed();
            StreamWriter tw = PrepareOutputFile(outputFile);

            _counts = new Dictionary <String, Int32>();

            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, Format);

            ResetStatus();
            while (csv.Next() && !ShouldStop())
            {
                var row = new LoadedRow(csv);
                UpdateStatus(false);
                String key = row.Data[targetField];
                int    count;
                if (!_counts.ContainsKey(key))
                {
                    count = 0;
                }
                else
                {
                    count = _counts[key];
                }

                if (count < countPer)
                {
                    WriteRow(tw, row);
                    count++;
                }

                _counts[key] = count;
            }
            ReportDone(false);
            csv.Close();
            tw.Close();
        }
Esempio n. 5
0
        /// <summary>
        /// Load the specified financial data.
        /// </summary>
        /// <param name="ticker">The ticker symbol to load.</param>
        /// <param name="dataNeeded">The financial data needed.</param>
        /// <param name="from">The beginning date to load data from.</param>
        /// <param name="to">The ending date to load data to.</param>
        /// <returns>A collection of LoadedMarketData objects that represent the data
        /// loaded.</returns>
        public ICollection <LoadedMarketData> Load(TickerSymbol ticker, IList <MarketDataType> dataNeeded, DateTime from, DateTime to)
        {
            ICollection <LoadedMarketData> result =
                new List <LoadedMarketData>();
            Uri        url      = BuildURL(ticker, from, to);
            WebRequest http     = WebRequest.Create(url);
            var        response = (HttpWebResponse)http.GetResponse();

            using (Stream istream = response.GetResponseStream())
            {
                var csv = new ReadCSV(istream, true, CSVFormat.DecimalPoint);

                while (csv.Next())
                {
                    DateTime date     = csv.GetDate("date");
                    double   adjClose = csv.GetDouble("adj close");
                    double   open     = csv.GetDouble("open");
                    double   close    = csv.GetDouble("close");
                    double   high     = csv.GetDouble("high");
                    double   low      = csv.GetDouble("low");
                    double   volume   = csv.GetDouble("volume");

                    var data =
                        new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.AdjustedClose, adjClose);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.Close, close);
                    data.SetData(MarketDataType.High, high);
                    data.SetData(MarketDataType.Low, low);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.Volume, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return(result);
        }
Esempio n. 6
0
        /// <summary>
        /// Used to calibrate the training file.
        /// </summary>
        /// <param name="file">The file to consider.</param>
        protected void CalibrateFile(string file)
        {
            var csv = new ReadCSV(file, true, CSVFormat.English);

            while (csv.Next())
            {
                var    a     = new double[1];
                double close = csv.GetDouble(1);

                const int fastIndex = 2;
                const int slowIndex = fastIndex + Config.InputWindow;
                a[0] = close;
                for (int i = 0; i < Config.InputWindow; i++)
                {
                    double fast = csv.GetDouble(fastIndex + i);
                    double slow = csv.GetDouble(slowIndex + i);

                    if (!double.IsNaN(fast) && !double.IsNaN(slow))
                    {
                        double diff = (fast - slow) / Config.PipSize;
                        _minDifference = Math.Min(_minDifference, diff);
                        _maxDifference = Math.Max(_maxDifference, diff);
                    }
                }
                _window.Add(a);

                if (_window.IsFull())
                {
                    double max = (_window.CalculateMax(0, Config.InputWindow) - close) / Config.PipSize;
                    double min = (_window.CalculateMin(0, Config.InputWindow) - close) / Config.PipSize;

                    double o = Math.Abs(max) > Math.Abs(min) ? max : min;

                    _maxPiPs = Math.Max(_maxPiPs, (int)o);
                    _minPiPs = Math.Min(_minPiPs, (int)o);
                }
            }
        }
Esempio n. 7
0
        /// <summary>
        ///     Construct the object.
        /// </summary>
        /// <param name="filename">The filename.</param>
        /// <param name="headers">False if headers are not extended.</param>
        /// <param name="format">The CSV format.</param>
        public CSVHeaders(FileInfo filename, bool headers,
                          CSVFormat format)
        {
            _headerList    = new List <String>();
            _columnMapping = new Dictionary <String, Int32>();
            ReadCSV csv = null;

            try
            {
                csv = new ReadCSV(filename.ToString(), headers, format);
                if (csv.Next())
                {
                    if (headers)
                    {
                        foreach (String str  in  csv.ColumnNames)
                        {
                            _headerList.Add(str);
                        }
                    }
                    else
                    {
                        for (int i = 0; i < csv.ColumnCount; i++)
                        {
                            _headerList.Add("field:" + (i + 1));
                        }
                    }
                }

                Init();
            }
            finally
            {
                if (csv != null)
                {
                    csv.Close();
                }
            }
        }
Esempio n. 8
0
        /// <summary>
        ///     Process the input file.
        /// </summary>
        /// <param name="outputFile">The output file to write to.</param>
        public void Process(FileInfo outputFile)
        {
            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, Format);

            StreamWriter tw = PrepareOutputFile(outputFile);

            _filteredCount = 0;

            ResetStatus();
            while (csv.Next() && !ShouldStop())
            {
                UpdateStatus(false);
                var row = new LoadedRow(csv);
                if (ShouldProcess(row))
                {
                    WriteRow(tw, row);
                    _filteredCount++;
                }
            }
            ReportDone(false);
            tw.Close();
            csv.Close();
        }
        /// <summary>
        /// Perform a basic analyze of the file. This method is used mostly
        /// internally.
        /// </summary>
        ///
        public void PerformBasicCounts()
        {
            if (_outputFormat == null)
            {
                _outputFormat = _inputFormat;
            }

            ResetStatus();
            int rc  = 0;
            var csv = new ReadCSV(_inputFilename.ToString(),
                                  _expectInputHeaders, _inputFormat);

            while (csv.Next() && !_cancel)
            {
                UpdateStatus(true);
                rc++;
            }
            _recordCount = rc;
            _columnCount = csv.ColumnCount;

            ReadHeaders(csv);
            csv.Close();
            ReportDone(true);
        }
Esempio n. 10
0
        /// <summary>
        /// Normalize the input file. Write to the specified file.
        /// </summary>
        ///
        /// <param name="file">The file to write to.</param>
        public void Normalize(FileInfo file)
        {
            if (_analyst == null)
            {
                throw new EncogError(
                          "Can't normalize yet, file has not been analyzed.");
            }

            ReadCSV      csv = null;
            StreamWriter tw  = null;

            try
            {
                csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, InputFormat);

                file.Delete();
                tw = new StreamWriter(file.OpenWrite());

                // write headers, if needed
                if (ProduceOutputHeaders)
                {
                    WriteHeaders(tw);
                }

                ResetStatus();
                int outputLength = _analyst.DetermineTotalColumns();

                // write file contents
                while (csv.Next() && !ShouldStop())
                {
                    UpdateStatus(false);

                    double[] output = ExtractFields(
                        _analyst, _analystHeaders, csv, outputLength,
                        false);

                    if (_series.TotalDepth > 1)
                    {
                        output = _series.Process(output);
                    }

                    if (output != null)
                    {
                        var line = new StringBuilder();
                        NumberList.ToList(OutputFormat, line, output);
                        tw.WriteLine(line);
                    }
                }
            }
            catch (IOException e)
            {
                throw new QuantError(e);
            }
            finally
            {
                ReportDone(false);
                if (csv != null)
                {
                    try
                    {
                        csv.Close();
                    }
                    catch (Exception ex)
                    {
                        EncogLogging.Log(ex);
                    }
                }

                if (tw != null)
                {
                    try
                    {
                        tw.Close();
                    }
                    catch (Exception ex)
                    {
                        EncogLogging.Log(ex);
                    }
                }
            }
        }
        /// <summary>
        /// Load the specified financial data. 
        /// </summary>
        /// <param name="ticker">The ticker symbol to load.</param>
        /// <param name="dataNeeded">The financial data needed.</param>
        /// <param name="from">The beginning date to load data from.</param>
        /// <param name="to">The ending date to load data to.</param>
        /// <returns>A collection of LoadedMarketData objects that represent the data
        /// loaded.</returns>
        public ICollection<LoadedMarketData> Load(TickerSymbol ticker,
                 IList<MarketDataType> dataNeeded, DateTime from,
                 DateTime to)
        {

            ICollection<LoadedMarketData> result =
               new List<LoadedMarketData>();
            Uri url = buildURL(ticker, from, to);
            WebRequest http = HttpWebRequest.Create(url);
            HttpWebResponse response = (HttpWebResponse)http.GetResponse();

            using (Stream istream = response.GetResponseStream())
            {
                ReadCSV csv = new ReadCSV(istream, true, CSVFormat.DECIMAL_POINT);

                while (csv.Next())
                {
                    DateTime date = csv.GetDate("date");
                    double adjClose = csv.GetDouble("adj close");
                    double open = csv.GetDouble("open");
                    double close = csv.GetDouble("close");
                    double high = csv.GetDouble("high");
                    double low = csv.GetDouble("low");
                    double volume = csv.GetDouble("volume");

                    LoadedMarketData data =
                       new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.ADJUSTED_CLOSE, adjClose);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.CLOSE, close);
                    data.SetData(MarketDataType.HIGH, high);
                    data.SetData(MarketDataType.LOW, low);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.VOLUME, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return result;

        }
Esempio n. 12
0
        /// <summary>
        /// Process the file.
        /// </summary>
        ///
        /// <param name="outputFile">The output file.</param>
        /// <param name="method">THe method to use.</param>
        public void Process(FileInfo outputFile, IMLMethod method)
        {
            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, Format);

            IMLData output;

            foreach (AnalystField field in _analyst.Script.Normalize.NormalizedFields)
            {
                field.Init();
            }

            int outputLength = _analyst.DetermineTotalInputFieldCount();

            StreamWriter tw = PrepareOutputFile(outputFile);

            ResetStatus();
            while (csv.Next())
            {
                UpdateStatus(false);
                var row = new LoadedRow(csv, _outputColumns);

                double[] inputArray = AnalystNormalizeCSV.ExtractFields(_analyst,
                                                                        _analystHeaders, csv, outputLength, true);
                if (_series.TotalDepth > 1)
                {
                    inputArray = _series.Process(inputArray);
                }

                if (inputArray != null)
                {
                    IMLData input = new BasicMLData(inputArray);

                    // evaluation data
                    if ((method is IMLClassification) &&
                        !(method is IMLRegression))
                    {
                        // classification only?
                        var tmp = new BasicMLData(1);
                        tmp[0] = ((IMLClassification)method).Classify(input);
                        output = tmp;
                    }
                    else
                    {
                        // regression
                        output = ((IMLRegression)method).Compute(input);
                    }

                    // skip file data
                    int index       = _fileColumns;
                    int outputIndex = 0;


                    // display output
                    foreach (AnalystField field  in  _analyst.Script.Normalize.NormalizedFields)
                    {
                        if (_analystHeaders.Find(field.Name) != -1)
                        {
                            if (field.Output)
                            {
                                if (field.Classify)
                                {
                                    // classification
                                    ClassItem cls = field.DetermineClass(
                                        outputIndex, output);
                                    outputIndex += field.ColumnsNeeded;
                                    if (cls == null)
                                    {
                                        row.Data[index++] = "?Unknown?";
                                    }
                                    else
                                    {
                                        row.Data[index++] = cls.Name;
                                    }
                                }
                                else
                                {
                                    // regression
                                    double n = output[outputIndex++];
                                    n = field.DeNormalize(n);
                                    row.Data[index++] = Format
                                                        .Format(n, Precision);
                                }
                            }
                        }
                    }
                }

                WriteRow(tw, row);
            }
            ReportDone(false);
            tw.Close();
            csv.Close();
        }
Esempio n. 13
0
        /// <summary>
        /// Reads the CSV and call loader.
        /// Used internally to load the csv and place data in the marketdataset.
        /// </summary>
        /// <param name="symbol">The symbol.</param>
        /// <param name="neededTypes">The needed types.</param>
        /// <param name="from">From.</param>
        /// <param name="to">To.</param>
        /// <param name="File">The file.</param>
        /// <returns></returns>
        private ICollection <LoadedMarketData> ReadAndCallLoader(
            TickerSymbol symbol,
            IEnumerable <MarketDataType> neededTypes,
            DateTime from,
            DateTime to,
            string File)
        {
            //We got a file, lets load it.

            ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
            ReadCSV csv = new ReadCSV(File, true, CSVFormat.English);

            //In case we want to use a different date format...and have used the SetDateFormat method, our DateFormat must then not be null..
            //We will use the ?? operator to check for nullables.
            csv.DateFormat = DateFormat ?? "yyyy-MM-dd HH:mm:ss";
            csv.TimeFormat = "HH:mm:ss";

            DateTime ParsedDate = from;
            bool     writeonce  = true;

            while (csv.Next())
            {
                DateTime date = csv.GetDate(0);
                ParsedDate = date;

                if (writeonce)
                {
                    Console.WriteLine(@"First parsed date in csv:" + ParsedDate.ToShortDateString());
                    Console.WriteLine(@"Stopping at date:" + to.ToShortDateString());
                    Console.WriteLine(@"Current DateTime:" + ParsedDate.ToShortDateString() + @" Time:" +
                                      ParsedDate.ToShortTimeString() + @"  Asked Start date was " +
                                      from.ToShortDateString());
                    writeonce = false;
                }
                if (ParsedDate >= from && ParsedDate <= to)
                {
                    DateTime         datex            = csv.GetDate(0);
                    double           open             = csv.GetDouble(1);
                    double           close            = csv.GetDouble(2);
                    double           high             = csv.GetDouble(3);
                    double           low              = csv.GetDouble(4);
                    double           volume           = csv.GetDouble(5);
                    double           range            = Math.Abs(open - close);
                    double           HighLowRange     = Math.Abs(high - low);
                    double           DirectionalRange = close - open;
                    LoadedMarketData data             = new LoadedMarketData(datex, symbol);
                    data.SetData(MarketDataType.Open, open);
                    data.SetData(MarketDataType.High, high);
                    data.SetData(MarketDataType.Low, low);
                    data.SetData(MarketDataType.Close, close);
                    data.SetData(MarketDataType.Volume, volume);
                    data.SetData(MarketDataType.RangeHighLow, Math.Round(HighLowRange, 6));
                    data.SetData(MarketDataType.RangeOpenClose, Math.Round(range, 6));
                    data.SetData(MarketDataType.RangeOpenCloseNonAbsolute, Math.Round(DirectionalRange, 6));
                    result.Add(data);
                }
            }

            csv.Close();
            return(result);
        }
        public void EvaluateNetwork()
        {
            BasicNetwork network = LoadNetwork();
            DataNormalization norm = LoadNormalization();

            var csv = new ReadCSV(_config.EvaluateFile.ToString(), false, ',');
            var input = new double[norm.InputFields.Count];
            var eqField = (OutputEquilateral) norm.FindOutputField(
                typeof (OutputEquilateral), 0);

            int correct = 0;
            int total = 0;
            while (csv.Next())
            {
                total++;
                for (int i = 0; i < input.Length; i++)
                {
                    input[i] = csv.GetDouble(i);
                }
                IMLData inputData = norm.BuildForNetworkInput(input);
                IMLData output = network.Compute(inputData);
                int coverTypeActual = DetermineTreeType(eqField, output);
                int coverTypeIdeal = (int) csv.GetDouble(54) - 1;

                KeepScore(coverTypeActual, coverTypeIdeal);

                if (coverTypeActual == coverTypeIdeal)
                {
                    correct++;
                }
            }

            Console.WriteLine(@"Total cases:" + total);
            Console.WriteLine(@"Correct cases:" + correct);
            double percent = correct/(double) total;
            Console.WriteLine(@"Correct percent:"
                              + Format.FormatPercentWhole(percent));
            for (int i = 0; i < 7; i++)
            {
                double p = (_treeCorrect[i]/(double) _treeCount[i]);
                Console.WriteLine(@"Tree Type #" + i + @" - Correct/total: "
                                  + _treeCorrect[i] + @"/" + _treeCount[i] + @"("
                                  + Format.FormatPercentWhole(p) + @")");
            }
        }
        public ICollection<LoadedMarketData> Load(
            TickerSymbol ticker,
            IList<MarketDataType> dataNeeded,
            DateTime from,
            DateTime to)
        {
            // TODO: nyyyyyyyaaagh!

            ICollection<LoadedMarketData> result =
                new List<LoadedMarketData>();
            Uri url = BuildURL(ticker, from, to);
            WebRequest http = HttpWebRequest.Create(url);
            HttpWebResponse response = http.GetResponse() as HttpWebResponse;

            using (Stream istream = response.GetResponseStream())
            {
                ReadCSV csv = new ReadCSV(
                    istream,
                    true,
                    CSVFormat.DECIMAL_POINT
                );

                while (csv.Next())
                {
                    // todo: edit headers to match
                    DateTime date = csv.GetDate("DATE");
                    date =
                        date.Add(
                            new TimeSpan(
                                csv.GetDate("TIME").Hour,
                                csv.GetDate("TIME").Minute,
                                csv.GetDate("TIME").Second
                            )
                        );
                    double open = csv.GetDouble("OPEN");
                    double high = csv.GetDouble("MIN");
                    double low = csv.GetDouble("MAX");
                    double close = csv.GetDouble("CLOSE");
                    double volume = csv.GetDouble("VOLUME");

                    LoadedMarketData data =
                        new LoadedMarketData(date, ticker);
                    data.SetData(MarketDataType.OPEN, open);
                    data.SetData(MarketDataType.HIGH, high);
                    data.SetData(MarketDataType.LOW, low);
                    data.SetData(MarketDataType.CLOSE, close);
                    data.SetData(MarketDataType.VOLUME, volume);
                    result.Add(data);
                }

                csv.Close();
                istream.Close();
            }
            return result;
        }
Esempio n. 16
0
        public ICollection <LoadedMarketData> ReadAndCallLoader(TickerSymbol symbol, IList <MarketDataType> neededTypes, DateTime from, DateTime to, string File)
        {
            try
            {
                //We got a file, lets load it.
                ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
                ReadCSV csv = new ReadCSV(File, true, CSVFormat.DecimalComma);
                csv.DateFormat = "yyyy.MM.dd HH:mm";

                DateTime ParsedDate = from;


                //  Time,Open,High,Low,Close,Volume
                while (csv.Next() /*&& ParsedDate >= from && ParsedDate <= to*/)
                {
                    DateTime date = csv.GetDate("Date");

                    if (date > to)
                    {
                        break;
                    }
                    if (date < from)
                    {
                        continue;
                    }

                    double close = csv.GetDouble("Close");
                    //double Bid= csv.GetDouble("Bid");
                    //double Ask = csv.GetDouble("Ask");
                    //double AskVolume = csv.GetDouble("AskVolume");
                    //double BidVolume= csv.GetDouble("BidVolume");
                    //double _trade = ( Bid + Ask ) /2;
                    //double _tradeSize = (AskVolume + BidVolume) / 2;
                    LoadedMarketData data = new LoadedMarketData(date, symbol);
                    data.SetData(MarketDataType.Close, close);
                    //data.SetData(MarketDataType.Trade, _trade);
                    //data.SetData(MarketDataType.Volume, _tradeSize);
                    result.Add(data);

                    Console.WriteLine("Current DateTime:" + date.ToShortDateString() + " Time:" + date.ToShortTimeString() + "  Start date was " + from.ToShortDateString());
                    Console.WriteLine("Stopping at date:" + to.ToShortDateString());

                    //double open = csv.GetDouble("Open");
                    //double close = csv.GetDouble("High");
                    //double high = csv.GetDouble("Low");
                    //double low = csv.GetDouble("Close");
                    //double volume = csv.GetDouble("Volume");
                    //LoadedMarketData data = new LoadedMarketData(date, symbol);
                    //data.SetData(MarketDataType.Open, open);
                    //data.SetData(MarketDataType.High, high);
                    //data.SetData(MarketDataType.Low, low);
                    //data.SetData(MarketDataType.Close, close);
                    //data.SetData(MarketDataType.Volume, volume);
                    result.Add(data);
                }

                csv.Close();
                return(result);
            }

            catch (Exception ex)
            {
                Console.WriteLine("Something went wrong reading the csv");
                Console.WriteLine("Something went wrong reading the csv:" + ex.Message);
            }

            Console.WriteLine("Something went wrong reading the csv");
            return(null);
        }
Esempio n. 17
0
        /// <summary>
        /// Reads and parses CSV data from file
        /// </summary>
        /// <param name="ticker">Ticker associated with CSV file</param>
        /// <param name="neededTypes">Columns to parse (headers)</param>
        /// <param name="from">DateTime from</param>
        /// <param name="to">DateTime to</param>
        /// <param name="File">Filepath to CSV</param>
        /// <returns>Marketdata</returns>
        public ICollection <LoadedMarketData> ReadAndCallLoader(TickerSymbol ticker, IList <MarketDataType> neededTypes, DateTime from, DateTime to, string File)
        {
            try
            {
                LoadedFile = File;
                Console.WriteLine("Loading instrument: " + ticker.Symbol + " from: " + File);
                //We got a file, lets load it.
                ICollection <LoadedMarketData> result = new List <LoadedMarketData>();
                ReadCSV csv = new ReadCSV(File, true, LoadedFormat);
                if (DateTimeDualColumn)
                {
                    csv.DateFormat = DateFormat;
                    csv.TimeFormat = TimeFormat;
                }
                else
                {
                    csv.DateFormat = DateFormat;
                }

                //"Date","Time","Open","High","Low","Close","Volume"
                while (csv.Next())
                {
                    string datetime = "";
                    if (DateTimeDualColumn)
                    {
                        datetime = csv.GetDate("Date").ToShortDateString() + " " +
                                   csv.GetTime("Time").ToShortTimeString();
                    }
                    else
                    {
                        datetime = csv.GetDate("Date").ToShortDateString();
                    }
                    DateTime date = DateTime.Parse(datetime);
                    if (date > from && date < to)
                    {
                        // CSV columns
                        double open   = csv.GetDouble("Open");
                        double high   = csv.GetDouble("High");
                        double low    = csv.GetDouble("Low");
                        double close  = csv.GetDouble("Close");
                        double volume = csv.GetDouble("Volume");

                        LoadedMarketData data = new LoadedMarketData(date, ticker);
                        foreach (MarketDataType marketDataType in neededTypes)
                        {
                            switch (marketDataType.ToString())
                            {
                            case "Open":
                                data.SetData(MarketDataType.Open, open);
                                break;

                            case "High":
                                data.SetData(MarketDataType.High, high);
                                break;

                            case "Low":
                                data.SetData(MarketDataType.Low, low);
                                break;

                            case "Close":
                                data.SetData(MarketDataType.Close, close);
                                break;

                            case "Volume":
                                data.SetData(MarketDataType.Volume, volume);
                                break;

                            case "RangeHighLow":
                                data.SetData(MarketDataType.RangeHighLow, Math.Round(Math.Abs(high - low), 6));
                                break;

                            case "RangeOpenClose":
                                data.SetData(MarketDataType.RangeOpenClose, Math.Round(Math.Abs(close - open), 6));
                                break;

                            case "RangeOpenCloseNonAbsolute":
                                data.SetData(MarketDataType.RangeOpenCloseNonAbsolute, Math.Round(close - open, 6));
                                break;

                            case "Weighted":
                                data.SetData(MarketDataType.Weighted, Math.Round((high + low + 2 * close) / 4, 6));
                                break;
                            }
                        }
                        result.Add(data);
                    }
                }
                csv.Close();
                return(result);
            }

            catch (Exception ex)
            {
                Console.WriteLine("Something went wrong reading the csv: " + ex.Message);
            }
            return(null);
        }
Esempio n. 18
0
 public ICollection<LoadedMarketData> Load(TickerSymbol ticker, IList<MarketDataType> dataNeeded, DateTime from, DateTime to)
 {
     ICollection<LoadedMarketData> is2 = new List<LoadedMarketData>();
     HttpWebResponse response = (HttpWebResponse) WebRequest.Create(x38c212309d8d5dd3(ticker, from, to)).GetResponse();
     using (Stream stream = response.GetResponseStream())
     {
         DateTime time;
         double num;
         double num2;
         double num3;
         double num4;
         double num5;
         double num6;
         LoadedMarketData data;
         ReadCSV dcsv = new ReadCSV(stream, true, CSVFormat.DecimalPoint);
         goto Label_005B;
     Label_003F:
         data.SetData(MarketDataType.Open, num2);
     Label_0049:
         data.SetData(MarketDataType.Volume, num6);
         is2.Add(data);
     Label_005B:
         if (dcsv.Next())
         {
             goto Label_01AF;
         }
         dcsv.Close();
         stream.Close();
         if ((((uint) num) - ((uint) num5)) <= uint.MaxValue)
         {
             goto Label_0125;
         }
         if ((((uint) num) & 0) == 0)
         {
             goto Label_00B0;
         }
     Label_00A4:
         data.SetData(MarketDataType.Low, num5);
         goto Label_003F;
     Label_00B0:
         data.SetData(MarketDataType.AdjustedClose, num);
         do
         {
             data.SetData(MarketDataType.Open, num2);
             if ((((uint) num) - ((uint) num6)) > uint.MaxValue)
             {
                 goto Label_0049;
             }
             data.SetData(MarketDataType.Close, num3);
             data.SetData(MarketDataType.High, num4);
         }
         while ((((uint) num5) - ((uint) num3)) > uint.MaxValue);
         if (((uint) num2) >= 0)
         {
             goto Label_00A4;
         }
         goto Label_003F;
     Label_0125:
         if (((uint) num2) >= 0)
         {
             return is2;
         }
         goto Label_005B;
     Label_013C:
         num6 = dcsv.GetDouble("volume");
         data = new LoadedMarketData(time, ticker);
         if ((((uint) num2) | 2) == 0)
         {
             goto Label_017C;
         }
         goto Label_00B0;
     Label_016E:
         num2 = dcsv.GetDouble("open");
     Label_017C:
         num3 = dcsv.GetDouble("close");
         num4 = dcsv.GetDouble("high");
         num5 = dcsv.GetDouble("low");
         goto Label_013C;
     Label_01AF:
         time = dcsv.GetDate("date");
         num = dcsv.GetDouble("adj close");
         if ((((uint) num3) + ((uint) num6)) <= uint.MaxValue)
         {
             goto Label_016E;
         }
         goto Label_00B0;
     }
 }
Esempio n. 19
0
        /// <summary>
        /// Analyze the file.
        /// </summary>
        private void AnalyzeFile()
        {
            ScriptProperties prop = _analyst.Script.Properties;

            // get filenames, headers & format
            String sourceID = prop.GetPropertyString(
                ScriptProperties.HeaderDatasourceRawFile);

            FileInfo sourceFile = _analyst.Script.ResolveFilename(sourceID);
            CSVFormat format = _analyst.Script.DetermineFormat();
            bool headers = _analyst.Script.ExpectInputHeaders(sourceID);

            // read the file
            _rowCount = 0;
            _missingCount = 0;

            var csv = new ReadCSV(sourceFile.ToString(), headers, format);
            while (csv.Next())
            {
                _rowCount++;
                if (csv.HasMissing())
                {
                    _missingCount++;
                }
            }
            csv.Close();
        }
Esempio n. 20
0
        /// <summary>
        /// Load financial data.
        /// </summary>
        /// <param name="ticker">The ticker symbol.</param>
        /// <param name="output">The output file.</param>
        /// <param name="outputFormat">The output format.</param>
        /// <param name="from">Starting date.</param>
        /// <param name="to">Ending date.</param>
        public void LoadAllData(String ticker, String output, CSVFormat outputFormat, DateTime from,
            DateTime to)
        {
            try
            {
                Uri urlData = BuildURL(ticker, from, to);
                WebRequest httpData = WebRequest.Create(urlData);
                var responseData = (HttpWebResponse) httpData.GetResponse();

                if (responseData != null)
                {
                    Stream istreamData = responseData.GetResponseStream();
                    var csvData = new ReadCSV(istreamData, true, CSVFormat.English);

                    TextWriter tw = new StreamWriter(output);
                    tw.WriteLine("date,time,open price,high price,low price,close price,volume,adjusted price");

                    while (csvData.Next())
                    {
                        DateTime date = csvData.GetDate("date");
                        double adjustedClose = csvData.GetDouble("adj close");
                        double open = csvData.GetDouble("open");
                        double close = csvData.GetDouble("close");
                        double high = csvData.GetDouble("high");
                        double low = csvData.GetDouble("low");
                        var volume = (long) csvData.GetDouble("volume");

                        var line = new StringBuilder();
                        line.Append(NumericDateUtil.DateTime2Long(date));
                        line.Append(outputFormat.Separator);
                        line.Append(NumericDateUtil.Time2Int(date));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(open, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(high, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(low, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(close, Precision));
                        line.Append(outputFormat.Separator);
                        line.Append(volume);
                        line.Append(outputFormat.Separator);
                        line.Append(outputFormat.Format(adjustedClose, Precision));
                        tw.WriteLine(line.ToString());
                    }

                    tw.Close();
                }
            }
            catch (WebException ex)
            {
                throw new QuantError(ex);
            }
        }
Esempio n. 21
0
        /// <summary>
        ///     Perform the analysis.
        /// </summary>
        /// <param name="target">The Encog analyst object to analyze.</param>
        public void Process(EncogAnalyst target)
        {
            int       count     = 0;
            CSVFormat csvFormat = ConvertStringConst
                                  .ConvertToCSVFormat(_format);
            var csv = new ReadCSV(_filename, _headers, csvFormat);

            // pass one, calculate the min/max
            while (csv.Next())
            {
                if (_fields == null)
                {
                    GenerateFields(csv);
                }

                for (int i = 0; i < csv.ColumnCount; i++)
                {
                    if (_fields != null)
                    {
                        _fields[i].Analyze1(csv.Get(i));
                    }
                }
                count++;
            }

            if (count == 0)
            {
                throw new AnalystError("Can't analyze file, it is empty.");
            }

            if (_fields != null)
            {
                foreach (AnalyzedField field in _fields)
                {
                    field.CompletePass1();
                }
            }

            csv.Close();

            // pass two, standard deviation
            csv = new ReadCSV(_filename, _headers, csvFormat);

            while (csv.Next())
            {
                for (int i = 0; i < csv.ColumnCount; i++)
                {
                    if (_fields != null)
                    {
                        _fields[i].Analyze2(csv.Get(i));
                    }
                }
            }

            if (_fields != null)
            {
                foreach (AnalyzedField field in _fields)
                {
                    field.CompletePass2();
                }
            }

            csv.Close();

            String str = _script.Properties.GetPropertyString(
                ScriptProperties.SetupConfigAllowedClasses) ?? "";

            bool allowInt  = str.Contains("int");
            bool allowReal = str.Contains("real") ||
                             str.Contains("double");
            bool allowString = str.Contains("string");

            // remove any classes that did not qualify
            foreach (AnalyzedField field in _fields)
            {
                if (field.Class)
                {
                    if (!allowInt && field.Integer)
                    {
                        field.Class = false;
                    }

                    if (!allowString && (!field.Integer && !field.Real))
                    {
                        field.Class = false;
                    }

                    if (!allowReal && field.Real && !field.Integer)
                    {
                        field.Class = false;
                    }
                }
            }

            // merge with existing
            if ((target.Script.Fields != null) &&
                (_fields.Length == target.Script.Fields.Length))
            {
                for (int i = 0; i < _fields.Length; i++)
                {
                    // copy the old field name
                    _fields[i].Name = target.Script.Fields[i].Name;

                    if (_fields[i].Class)
                    {
                        IList <AnalystClassItem> t = _fields[i].AnalyzedClassMembers;
                        IList <AnalystClassItem> s = target.Script.Fields[i].ClassMembers;

                        if (s.Count == t.Count)
                        {
                            for (int j = 0; j < s.Count; j++)
                            {
                                if (t[j].Code.Equals(s[j].Code))
                                {
                                    t[j].Name = s[j].Name;
                                }
                            }
                        }
                    }
                }
            }

            // now copy the fields
            var df = new DataField[_fields.Length];

            for (int i_4 = 0; i_4 < df.Length; i_4++)
            {
                df[i_4] = _fields[i_4].FinalizeField();
            }

            target.Script.Fields = df;
        }
Esempio n. 22
0
        /// <summary>
        ///     Program entry point.
        /// </summary>
        /// <param name="app">Holds arguments and other info.</param>
        public void Execute(IExampleInterface app)
        {
            ErrorCalculation.Mode = ErrorCalculationMode.RMS;
            // Download the data that we will attempt to model.
            string filename = DownloadData(app.Args);

            // Define the format of the data file.
            // This area will change, depending on the columns and
            // format of the file that you are trying to model.
            var format = new CSVFormat('.', ' '); // decimal point and
            // space separated
            IVersatileDataSource source = new CSVDataSource(filename, true,
                                                            format);

            var data = new VersatileMLDataSet(source);

            data.NormHelper.Format = format;

            ColumnDefinition columnSSN = data.DefineSourceColumn("SSN",
                                                                 ColumnType.Continuous);
            ColumnDefinition columnDEV = data.DefineSourceColumn("DEV",
                                                                 ColumnType.Continuous);

            // Analyze the data, determine the min/max/mean/sd of every column.
            data.Analyze();

            // Use SSN & DEV to predict SSN. For time-series it is okay to have
            // SSN both as
            // an input and an output.
            data.DefineInput(columnSSN);
            data.DefineInput(columnDEV);
            data.DefineOutput(columnSSN);

            // Create feedforward neural network as the model type.
            // MLMethodFactory.TYPE_FEEDFORWARD.
            // You could also other model types, such as:
            // MLMethodFactory.SVM: Support Vector Machine (SVM)
            // MLMethodFactory.TYPE_RBFNETWORK: RBF Neural Network
            // MLMethodFactor.TYPE_NEAT: NEAT Neural Network
            // MLMethodFactor.TYPE_PNN: Probabilistic Neural Network
            var model = new EncogModel(data);

            model.SelectMethod(data, MLMethodFactory.TypeFeedforward);

            // Send any output to the console.
            model.Report = new ConsoleStatusReportable();

            // Now normalize the data. Encog will automatically determine the
            // correct normalization
            // type based on the model you chose in the last step.
            data.Normalize();

            // Set time series.
            data.LeadWindowSize = 1;
            data.LagWindowSize  = WindowSize;

            // Hold back some data for a final validation.
            // Do not shuffle the data into a random ordering. (never shuffle
            // time series)
            // Use a seed of 1001 so that we always use the same holdback and
            // will get more consistent results.
            model.HoldBackValidation(0.3, false, 1001);

            // Choose whatever is the default training type for this model.
            model.SelectTrainingType(data);

            // Use a 5-fold cross-validated train. Return the best method found.
            // (never shuffle time series)
            var bestMethod = (IMLRegression)model.Crossvalidate(5,
                                                                false);

            // Display the training and validation errors.
            Console.WriteLine(@"Training error: "
                              + model.CalculateError(bestMethod,
                                                     model.TrainingDataset));
            Console.WriteLine(@"Validation error: "
                              + model.CalculateError(bestMethod,
                                                     model.ValidationDataset));

            // Display our normalization parameters.
            NormalizationHelper helper = data.NormHelper;

            Console.WriteLine(helper.ToString());

            // Display the final model.
            Console.WriteLine(@"Final model: " + bestMethod);

            // Loop over the entire, original, dataset and feed it through the
            // model. This also shows how you would process new data, that was
            // not part of your training set. You do not need to retrain, simply
            // use the NormalizationHelper class. After you train, you can save
            // the NormalizationHelper to later normalize and denormalize your
            // data.
            source.Close();
            var csv  = new ReadCSV(filename, true, format);
            var line = new String[2];

            // Create a vector to hold each time-slice, as we build them.
            // These will be grouped together into windows.
            var     slice  = new double[2];
            var     window = new VectorWindow(WindowSize + 1);
            IMLData input  = helper.AllocateInputVector(WindowSize + 1);

            // Only display the first 100
            int stopAfter = 100;

            while (csv.Next() && stopAfter > 0)
            {
                var result = new StringBuilder();

                line[0] = csv.Get(2); // ssn
                line[1] = csv.Get(3); // dev
                helper.NormalizeInputVector(line, slice, false);

                // enough data to build a full window?
                if (window.IsReady())
                {
                    window.CopyWindow(((BasicMLData)input).Data, 0);
                    String  correct   = csv.Get(2); // trying to predict SSN.
                    IMLData output    = bestMethod.Compute(input);
                    String  predicted = helper
                                        .DenormalizeOutputVectorToString(output)[0];

                    result.Append(line);
                    result.Append(" -> predicted: ");
                    result.Append(predicted);
                    result.Append("(correct: ");
                    result.Append(correct);
                    result.Append(")");

                    Console.WriteLine(result.ToString());
                }

                // Add the normalized slice to the window. We do this just after
                // the after checking to see if the window is ready so that the
                // window is always one behind the current row. This is because
                // we are trying to predict next row.
                window.Add(slice);

                stopAfter--;
            }
            csv.Close();

            // Delete data file and shut down.
            File.Delete(filename);
            EncogFramework.Instance.Shutdown();
        }
Esempio n. 23
0
 private void x076efb43809972d8()
 {
     string str;
     FileInfo info;
     CSVFormat format;
     bool flag;
     ScriptProperties properties = this._x554f16462d8d4675.Script.Properties;
     Label_00AD:
     str = properties.GetPropertyString("HEADER:DATASOURCE_rawFile");
     do
     {
         info = this._x554f16462d8d4675.Script.ResolveFilename(str);
         if (((uint) flag) < 0)
         {
             goto Label_00AD;
         }
         format = this._x554f16462d8d4675.Script.DetermineInputFormat(str);
         flag = this._x554f16462d8d4675.Script.ExpectInputHeaders(str);
     }
     while (0 != 0);
     this._x0fe0496cde3d05e3 = 0;
     if (0 == 0)
     {
         this._xed3494f8db69efb7 = 0;
         ReadCSV dcsv = new ReadCSV(info.ToString(), flag, format);
         while (dcsv.Next())
         {
             this._x0fe0496cde3d05e3++;
             if (dcsv.HasMissing())
             {
                 this._xed3494f8db69efb7++;
             }
         }
         dcsv.Close();
         if (((uint) flag) > uint.MaxValue)
         {
             goto Label_00AD;
         }
     }
 }
Esempio n. 24
0
        /// <summary>
        /// Process the input file and segregate into the output files.
        /// </summary>
        ///
        public void Process()
        {
            Validate();

            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, InputFormat);
            ResetStatus();

            foreach (SegregateTargetPercent target  in  _targets)
            {
                StreamWriter tw = PrepareOutputFile(target.Filename);

                while ((target.NumberRemaining > 0) && csv.Next()
                       && !ShouldStop())
                {
                    UpdateStatus(false);
                    var row = new LoadedRow(csv);
                    WriteRow(tw, row);
                    target.NumberRemaining = target.NumberRemaining - 1;
                }

                tw.Close();
            }
            ReportDone(false);
            csv.Close();
        }
Esempio n. 25
0
        /// <summary>
        ///     Private constructor.
        /// </summary>
        private PropertyConstraints()
        {
            _data = new Dictionary <String, List <PropertyEntry> >();
            try
            {
                Stream mask0 = ResourceLoader.CreateStream("Encog.Resources.analyst.csv");
                var    csv   = new ReadCSV(mask0, false, CSVFormat.EgFormat);

                while (csv.Next())
                {
                    String sectionStr = csv.Get(0);
                    String nameStr    = csv.Get(1);
                    String typeStr    = csv.Get(2);

                    // determine type
                    PropertyType t;
                    if ("boolean".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeBoolean;
                    }
                    else if ("real".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeDouble;
                    }
                    else if ("format".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeFormat;
                    }
                    else if ("int".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeInteger;
                    }
                    else if ("list-string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeListString;
                    }
                    else if ("string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase))
                    {
                        t = PropertyType.TypeString;
                    }
                    else
                    {
                        throw new AnalystError("Unknown type constraint: "
                                               + typeStr);
                    }

                    var entry = new PropertyEntry(t, nameStr,
                                                  sectionStr);
                    List <PropertyEntry> list;

                    if (_data.ContainsKey(sectionStr))
                    {
                        list = _data[sectionStr];
                    }
                    else
                    {
                        list = new List <PropertyEntry>();
                        _data[sectionStr] = list;
                    }

                    list.Add(entry);
                }

                csv.Close();
                mask0.Close();
            }
            catch (IOException e)
            {
                throw new EncogError(e);
            }
        }
Esempio n. 26
0
        /// <summary>
        ///     Program entry point.
        /// </summary>
        /// <param name="app">Holds arguments and other info.</param>
        public void Execute(IExampleInterface app)
        {
            // Download the data that we will attempt to model.
            string irisFile = DownloadData(app.Args);

            // Define the format of the data file.
            // This area will change, depending on the columns and
            // format of the file that you are trying to model.
            IVersatileDataSource source = new CSVDataSource(irisFile, false,
                                                            CSVFormat.DecimalPoint);
            var data = new VersatileMLDataSet(source);

            data.DefineSourceColumn("sepal-length", 0, ColumnType.Continuous);
            data.DefineSourceColumn("sepal-width", 1, ColumnType.Continuous);
            data.DefineSourceColumn("petal-length", 2, ColumnType.Continuous);
            data.DefineSourceColumn("petal-width", 3, ColumnType.Continuous);

            // Define the column that we are trying to predict.
            ColumnDefinition outputColumn = data.DefineSourceColumn("species", 4,
                                                                    ColumnType.Nominal);

            // Analyze the data, determine the min/max/mean/sd of every column.
            data.Analyze();

            // Map the prediction column to the output of the model, and all
            // other columns to the input.
            data.DefineSingleOutputOthersInput(outputColumn);

            // Create feedforward neural network as the model type. MLMethodFactory.TYPE_FEEDFORWARD.
            // You could also other model types, such as:
            // MLMethodFactory.SVM:  Support Vector Machine (SVM)
            // MLMethodFactory.TYPE_RBFNETWORK: RBF Neural Network
            // MLMethodFactor.TYPE_NEAT: NEAT Neural Network
            // MLMethodFactor.TYPE_PNN: Probabilistic Neural Network
            var model = new EncogModel(data);

            model.SelectMethod(data, MLMethodFactory.TypeFeedforward);

            // Send any output to the console.
            model.Report = new ConsoleStatusReportable();

            // Now normalize the data.  Encog will automatically determine the correct normalization
            // type based on the model you chose in the last step.
            data.Normalize();

            // Hold back some data for a final validation.
            // Shuffle the data into a random ordering.
            // Use a seed of 1001 so that we always use the same holdback and will get more consistent results.
            model.HoldBackValidation(0.3, true, 1001);

            // Choose whatever is the default training type for this model.
            model.SelectTrainingType(data);

            // Use a 5-fold cross-validated train.  Return the best method found.
            var bestMethod = (IMLRegression)model.Crossvalidate(5, true);

            // Display the training and validation errors.
            Console.WriteLine(@"Training error: " + model.CalculateError(bestMethod, model.TrainingDataset));
            Console.WriteLine(@"Validation error: " + model.CalculateError(bestMethod, model.ValidationDataset));

            // Display our normalization parameters.
            NormalizationHelper helper = data.NormHelper;

            Console.WriteLine(helper.ToString());

            // Display the final model.
            Console.WriteLine(@"Final model: " + bestMethod);

            // Loop over the entire, original, dataset and feed it through the model.
            // This also shows how you would process new data, that was not part of your
            // training set.  You do not need to retrain, simply use the NormalizationHelper
            // class.  After you train, you can save the NormalizationHelper to later
            // normalize and denormalize your data.
            source.Close();
            var     csv   = new ReadCSV(irisFile, false, CSVFormat.DecimalPoint);
            var     line  = new String[4];
            IMLData input = helper.AllocateInputVector();

            while (csv.Next())
            {
                var result = new StringBuilder();
                line[0] = csv.Get(0);
                line[1] = csv.Get(1);
                line[2] = csv.Get(2);
                line[3] = csv.Get(3);
                String correct = csv.Get(4);
                helper.NormalizeInputVector(line, ((BasicMLData)input).Data, false);
                IMLData output     = bestMethod.Compute(input);
                String  irisChosen = helper.DenormalizeOutputVectorToString(output)[0];

                result.Append(line);
                result.Append(" -> predicted: ");
                result.Append(irisChosen);
                result.Append("(correct: ");
                result.Append(correct);
                result.Append(")");

                Console.WriteLine(result.ToString());
            }
            csv.Close();

            // Delete data file ande shut down.
            File.Delete(irisFile);
            EncogFramework.Instance.Shutdown();
        }
        /// <summary>
        ///     Analyze the input file.
        /// </summary>
        /// <param name="input">The input file.</param>
        /// <param name="headers">True, if there are headers.</param>
        /// <param name="format">The format of the CSV data.</param>
        public virtual void Analyze(FileInfo input, bool headers,
                                    CSVFormat format)
        {
            ResetStatus();
            InputFilename      = input;
            ExpectInputHeaders = headers;
            Format             = format;
            _columnMapping.Clear();
            _columns.Clear();

            // first count the rows
            TextReader reader = null;

            try
            {
                int recordCount = 0;
                reader = new StreamReader(InputFilename.OpenRead());
                while (reader.ReadLine() != null)
                {
                    UpdateStatus(true);
                    recordCount++;
                }

                if (headers)
                {
                    recordCount--;
                }
                RecordCount = recordCount;
            }
            catch (IOException ex)
            {
                throw new QuantError(ex);
            }
            finally
            {
                ReportDone(true);
                if (reader != null)
                {
                    try
                    {
                        reader.Close();
                    }
                    catch (IOException e)
                    {
                        throw new QuantError(e);
                    }
                }
                InputFilename      = input;
                ExpectInputHeaders = headers;
                Format             = format;
            }

            // now analyze columns
            ReadCSV csv = null;

            try
            {
                csv = new ReadCSV(input.ToString(), headers, format);
                if (!csv.Next())
                {
                    throw new QuantError("File is empty");
                }

                for (int i = 0; i < csv.ColumnCount; i++)
                {
                    String name;

                    if (headers)
                    {
                        name = AttemptResolveName(csv.ColumnNames[i]);
                    }
                    else
                    {
                        name = "Column-" + (i + 1);
                    }

                    // determine if it should be an input/output field

                    String str = csv.Get(i);

                    bool io = false;

                    try
                    {
                        Format.Parse(str);
                        io = true;
                    }
                    catch (FormatException ex)
                    {
                        EncogLogging.Log(ex);
                    }

                    AddColumn(new FileData(name, i, io, io));
                }
            }
            finally
            {
                if (csv != null)
                {
                    csv.Close();
                }
                Analyzed = true;
            }
        }