Exemple #1
0
    public OpencvSource(string cam_or_url)
    {
        MAssert.Check(cam_or_url != string.Empty);

        // check if cam_or_url is number
        bool stream = false;

        for (int i = 0; i < cam_or_url.Length; ++i)
        {
            stream = stream ||
                     (cam_or_url[i] < '0') ||
                     (cam_or_url[i] > '9');
        }

        if (stream)
        {
            // open stream
            Console.WriteLine("opening stream '{0}'", cam_or_url);
            capturer = new OpenCvSharp.VideoCapture(cam_or_url);
        }
        else
        {
            // convert to integer
            int cam_id = Convert.ToInt32(cam_or_url, 10);
            MAssert.Check(cam_id >= 0, "wrong webcam id");

            // open vebcam
            Console.WriteLine("opening webcam {0}", cam_id);
            capturer = new OpenCvSharp.VideoCapture(cam_id);
            MAssert.Check(capturer.IsOpened(), "webcam not opened");

            // set resolution
            capturer.Set(OpenCvSharp.CaptureProperty.FrameWidth, 1280);
            capturer.Set(OpenCvSharp.CaptureProperty.FrameHeight, 720);

            MAssert.Check(capturer.IsOpened(), "webcam not opened");
        }

        // sometimes first few frames can be empty even if camera is good
        // so skip few frames
        OpenCvSharp.Mat frame;
        for (int i = 0; i < 10; ++i)
        {
            frame = capturer.RetrieveMat();
        }
        // check first two frames
        OpenCvSharp.Mat image1 = new OpenCvSharp.Mat(), image2 = new OpenCvSharp.Mat();
        capturer.Read(image1);
        capturer.Read(image2);
        Console.WriteLine("image1 size: {0}", image1.Size());
        Console.WriteLine("image1 size: {0}", image2.Size());

        MAssert.Check(
            !image1.Empty() &&
            !image2.Empty() &&
            image1.Size() == image2.Size() &&
            image1.Type() == OpenCvSharp.MatType.CV_8UC3 &&
            image2.Type() == OpenCvSharp.MatType.CV_8UC3,
            "error opening webcam or stream");
    }
        public void RotateImage(OpenCvSharp.Mat src, ref OpenCvSharp.Mat dst, double angle, double scale)
        {
            var imageCenter = new Point2f(src.Cols / 2f, src.Rows / 2f);
            var rotationMat = Cv2.GetRotationMatrix2D(imageCenter, angle, scale);

            Cv2.WarpAffine(src, dst, rotationMat, src.Size());
        }
        public void Run()
        {
            Mat src = new Mat(FilePath.Image.Girl, ImreadModes.Color);
            Mat dst = new Mat(FilePath.Image.Lenna, ImreadModes.Color);
            Mat src0 = src.Resize(dst.Size(), 0, 0, InterpolationFlags.Lanczos4);
            Mat mask = Mat.Zeros(src0.Size(), MatType.CV_8UC3);

            mask.Circle(200, 200, 100, Scalar.White, -1);

            Mat blend1 = new Mat();
            Mat blend2 = new Mat();
            Mat blend3 = new Mat();
            Cv2.SeamlessClone(
                src0, dst, mask, new Point(260, 270), blend1,
                SeamlessCloneMethods.NormalClone);
            Cv2.SeamlessClone(
                src0, dst, mask, new Point(260, 270), blend2,
                SeamlessCloneMethods.MonochromeTransfer);
                        Cv2.SeamlessClone(
                src0, dst, mask, new Point(260, 270), blend3,
                SeamlessCloneMethods.MixedClone);

            using (new Window("src", src0))
            using (new Window("dst", dst))
            using (new Window("mask", mask))
            using (new Window("blend NormalClone", blend1))
            using (new Window("blend MonochromeTransfer", blend2))
            using (new Window("blend MixedClone", blend3))
            {
                Cv2.WaitKey();
            }
        }
Exemple #4
0
        private int OpenCVDeepLearningDetector(string path)
        {
            // uses emugu library
            //https://medium.com/@vinuvish/face-detection-with-opencv-and-deep-learning-90bff9028fa8
            string prototextPath  = @"./Dnn/deploy.prototxt";
            string caffeModelPath = @"./Dnn/res10_300x300_ssd_iter_140000.caffemodel";

            //// load the model;
            using (var net = OpenCvSharp.Dnn.CvDnn.ReadNetFromCaffe(prototxt: prototextPath, caffeModel: caffeModelPath))
                using (OpenCvSharp.Mat image = Cv2.ImRead(path))
                {
                    // get the original image size
                    OpenCvSharp.Size imageSize = image.Size();
                    // the dnn detector works on a 300x300 image;
                    // now resize the image for the Dnn dector;
                    OpenCvSharp.Size size = new OpenCvSharp.Size(299, 299);
                    // set the scalar property to RGB colors, don't know what these values represent.
                    OpenCvSharp.Scalar mcvScalar = new OpenCvSharp.Scalar(104.0, 177.0, 123.0);
                    using (var blob = OpenCvSharp.Dnn.CvDnn.BlobFromImage(image: image, scaleFactor: 1, size: size, mean: mcvScalar, swapRB: true))
                    {
                        net.SetInput(blob, "data");
                        using (OpenCvSharp.Mat detections = net.Forward())
                        {
                            // convert the detected values to a faces object that we can use to
                            // draw rectangles.
                            List <ConfidenceRect> Faces = new List <ConfidenceRect>();
                            //var rows = detections.SizeOfDimension[2];
                            //Array ans = detections.GetData();
                            //for (int n = 0; n < rows; n++)
                            //{
                            //    object confidence = ans.GetValue(0, 0, n, 2);
                            //    object x1 = ans.GetValue(0, 0, n, 3);
                            //    object y1 = ans.GetValue(0, 0, n, 4);
                            //    object x2 = ans.GetValue(0, 0, n, 5);
                            //    object y2 = ans.GetValue(0, 0, n, 6);
                            //    ConfidenceRect cr = new ConfidenceRect(confidence, x1, y1, x2, y2, imageSize);
                            //    if (cr.Confidence > 0)
                            //    {
                            //        Debug.WriteLine($"Confidence {cr.Confidence}");
                            //    }
                            //    if (cr.Confidence > Confidence)
                            //    {
                            //        Faces.Add(cr);
                            //    }
                            //}

                            //// convert to a writeableBitmap
                            //WriteableBitmap writeableBitmap = new WriteableBitmap(ImageSource);

                            //ImageSource = ConvertWriteableBitmapToBitmapImage(writeableBitmap);
                            //OnPropertyChanged("ImageSource");

                            //DrawDnnOnImage?.Invoke(Faces, imageSize);
                            //return Faces.Count.ToString();
                        }
                    }
                }
            return(0);
        }
    public static void render_2D(ref OpenCvSharp.Mat left_display, sl.float2 img_scale, ref sl.Objects objects, bool render_mask, bool isTrackingON)
    {
        OpenCvSharp.Mat  overlay    = left_display.Clone();
        OpenCvSharp.Rect roi_render = new OpenCvSharp.Rect(0, 0, left_display.Size().Width, left_display.Size().Height);

        OpenCvSharp.Mat mask = new OpenCvSharp.Mat(left_display.Rows, left_display.Cols, OpenCvSharp.MatType.CV_8UC1);

        int line_thickness = 2;

        for (int i = 0; i < objects.numObject; i++)
        {
            sl.ObjectData obj = objects.objectData[i];
            if (Utils.renderObject(obj, isTrackingON))
            {
                OpenCvSharp.Scalar base_color = Utils.generateColorID_u(obj.id);

                // Display image scale bouding box 2d
                if (obj.boundingBox2D.Length < 4)
                {
                    continue;
                }

                Point top_left_corner     = Utils.cvt(obj.boundingBox2D[0], img_scale);
                Point top_right_corner    = Utils.cvt(obj.boundingBox2D[1], img_scale);
                Point bottom_right_corner = Utils.cvt(obj.boundingBox2D[2], img_scale);
                Point bottom_left_corner  = Utils.cvt(obj.boundingBox2D[3], img_scale);

                // Create of the 2 horizontal lines
                Cv2.Line(left_display, top_left_corner, top_right_corner, base_color, line_thickness);
                Cv2.Line(left_display, bottom_left_corner, bottom_right_corner, base_color, line_thickness);
                // Creation of two vertical lines
                Utils.drawVerticalLine(ref left_display, bottom_left_corner, top_left_corner, base_color, line_thickness);
                Utils.drawVerticalLine(ref left_display, bottom_right_corner, top_right_corner, base_color, line_thickness);

                // Scaled ROI
                OpenCvSharp.Rect roi = new OpenCvSharp.Rect(top_left_corner.X, top_left_corner.Y, (int)top_right_corner.DistanceTo(top_left_corner), (int)bottom_right_corner.DistanceTo(top_right_corner));

                overlay.SubMat(roi).SetTo(base_color);

                sl.float2 position_image = getImagePosition(obj.boundingBox2D, img_scale);
                Cv2.PutText(left_display, obj.label.ToString(), new Point(position_image.x - 20, position_image.y - 12), HersheyFonts.HersheyComplexSmall, 0.5f, new Scalar(255, 255, 255, 255), 1);

                if (!float.IsInfinity(obj.position.Z))
                {
                    string text = Math.Abs(obj.position.Z).ToString("0.##M");
                    Cv2.PutText(left_display, text, new Point(position_image.x - 20, position_image.y), HersheyFonts.HersheyComplexSmall, 0.5, new Scalar(255, 255, 255, 255), 1);
                }
            }
        }

        // Here, overlay is as the left image, but with opaque masks on each detected objects
        Cv2.AddWeighted(left_display, 0.7, overlay, 0.3, 0.0, left_display);
    }
Exemple #6
0
        /// <summary>
        /// utility function: convert one image to another with optional vertical flip
        /// </summary>
        /// <param name="src"></param>
        /// <param name="dst"></param>
        /// <param name="flags"></param>
        public static void ConvertImage(Mat src, Mat dst, ConvertImageModes flags = ConvertImageModes.None)
        {
            if (src == null)
            {
                throw new ArgumentNullException("src");
            }
            if (dst == null)
            {
                throw new ArgumentNullException("dst");
            }
            src.ThrowIfDisposed();
            dst.ThrowIfDisposed();

            dst.Create(src.Size(), MatType.CV_8UC3);
            NativeMethods.imgcodecs_cvConvertImage_Mat(src.CvPtr, dst.CvPtr, (int)flags);

            GC.KeepAlive(src);
            GC.KeepAlive(dst);
        }
Exemple #7
0
        /// <summary>
        /// Converts OpenCV Mat to Unity texture
        /// </summary>
        /// <returns>Unity texture</returns>
        /// <param name="mat">OpenCV Mat</param>
        /// <param name="outTexture">Unity texture to set pixels</param>
        public static Texture2D MatToTexture(Mat mat, Texture2D outTexture = null)
        {
            Size size = mat.Size();

            using (Mat unityMat = new Mat(utils_mat_to_texture_2(mat.CvPtr)))
            {
                if (null == outTexture || outTexture.width != size.Width || outTexture.height != size.Height)
                {
                    outTexture = new Texture2D(size.Width, size.Height);
                }

                int          count = size.Width * size.Height;
                Color32Bytes data  = new Color32Bytes();
                data.byteArray = new byte[count * 4];
                data.colors    = new Color32[count];
                Marshal.Copy(unityMat.Data, data.byteArray, 0, data.byteArray.Length);
                outTexture.SetPixels32(data.colors);
                outTexture.Apply();

                return(outTexture);
            }
        }
 //https://stackoverflow.com/questions/52016253/python-np-array-equivilent-in-opencv-opencvsharp
 public static Mat zeros_like(Mat a)
 {
     return(new Mat(a.Size(), a.Type(), new Scalar(0)));
 }
Exemple #9
0
        /// <summary>
        /// Eye見て傾き検出
        /// </summary>
        /// <param name="srcMat"></param>
        /// <param name="putMat"></param>
        /// <returns></returns>
        public Mat PutEllipseEyeMaskOnFace(Mat srcMat, Mat putMat)
        {
            var grayMat = new Mat();
            Cv2.CvtColor(srcMat, grayMat, ColorConversionCodes.BGR2GRAY);
            Cv2.EqualizeHist(grayMat, grayMat);

            var faces = Cascade.DetectMultiScale(grayMat);

            if (faces == null) return srcMat;

            var polygons = new List<List<Point>>();

            var faceCount = faces.Count(); // O(n)

            for (int d = 0; d < faceCount; d++)
            {
                polygons = new List<List<Point>>();

                int x1 = faces[d].X;
                int y1 = faces[d].Y;
                int width = faces[d].Width;
                int height = faces[d].Height;
                int x2 = x1 + width;
                int y2 = y1 + height;
                int pwidth = putMat.Width;
                int pheight = putMat.Height;
                int srcWidth = srcMat.Width;
                int srcHeight = srcMat.Height;

                polygons.Add(new List<Point>() {
                new Point(x1,y1),
                new Point(x2,y1),
                new Point(x2,y2),
                new Point(x1,y2),
                });

                var faceSize = new Size(width, height);

                //重ねるファイルは少し拡大したほうが良いかな?
                /*                Mat put0 = putMat[(int)(pwidth * 0.1) ,
                                    (int)(pwidth * 0.9),
                                    (int)(pheight * 0.1),
                                    (int)(pheight * 0.9)]
                                    .Resize(new Size(width, heigh), 0, 0, InterpolationFlags.Lanczos4);
                */
                Mat put0 = putMat.Resize(faceSize, 0, 0, InterpolationFlags.Lanczos4);

                //真ん中編の色を適当に抽出
                // 改良の余地あり(肌色領域の平均取ったり?)
                MatOfByte3 mat3 = new MatOfByte3(put0); // cv::Mat_<cv::Vec3b>
                var indexer = mat3.GetIndexer();
                Vec3b color = indexer[(int)(put0.Width * 0.5), (int)(put0.Height * 0.5)];

                //抽出した色で埋める
                Mat put1 = new Mat(srcMat.Size(), MatType.CV_8UC3, new Scalar(color.Item0, color.Item1, color.Item2));

                //重ねる範囲にコピー
                put1[y1, y2, x1, x2] = put0;

                Mat put1gray = Mat.Zeros(srcMat.Size(), MatType.CV_8UC1);
                put1gray[y1, y2, x1, x2] = grayMat[y1, y2, x1, x2];
                var eyes = EyeCascade.DetectMultiScale(put1gray);
                /*
                                Debug.WriteLine(eyes.Count());

                                var cccc = new Point(eyes[0].X + eyes[0].Width * 0.5, eyes[0].Y + eyes[0].Height * 0.5);
                                put1gray.Circle(cccc,(int)(eyes[0].Width * 0.5), new Scalar(0, 255, 255));
                                return put1gray;*/
                var eyeCount = eyes.Count();
                if (eyeCount >= 2)
                {
                    var eyePpints = new List<Point>();

                    var orderedEyes = eyes.OrderByDescending(x => x.Width * x.Height).ToArray();

                    while (true)
                    {
                        for (int i = 0; i < 2; i++)
                        {
                            eyePpints.Add(new Point(eyes[i].X + eyes[i].Width * 0.5, eyes[i].Y + eyes[i].Height * 0.5));
                        }
                        var wrapRect = Cv2.MinAreaRect(eyePpints);
                        if (Math.Abs(wrapRect.Angle % 180) < 20)
                        {
                            var scale = 1.0;
                            var angle = -wrapRect.Angle % 180;

                            var eyedx = (eyePpints[0].X + eyePpints[1].X) * 0.5 - wrapRect.Center.X;
                            var eyedy = (eyePpints[0].Y + eyePpints[1].Y) * 0.5 - wrapRect.Center.Y;

                            //中心はここ
                            var center = new Point(
                                (faces[d].X + faces[d].Width * 0.5) + eyedx,
                                (faces[d].Y + faces[d].Height * 0.5) + eyedy);

                            Mat matrix = Cv2.GetRotationMatrix2D(center, angle, scale);

                            //画像を回転させる
                            Cv2.WarpAffine(put1, put1, matrix, put1.Size());
                            var faceAvgWidth = (int)((wrapRect.Size.Width + faceSize.Width) * 0.6);
                            var rotateRect = new RotatedRect(center, new Size2f(faceAvgWidth, faceSize.Height * 0.9), angle);
                            Mat mask = Mat.Zeros(srcMat.Size(), MatType.CV_8UC3);
                            Cv2.Ellipse(mask, rotateRect, new Scalar(255, 255, 255), -1, LineTypes.AntiAlias);
                            //                Cv2.FillPoly(mask, polygons, new Scalar(255, 255, 255));

                            Cv2.SeamlessClone(put1, srcMat, mask, center, srcMat, SeamlessCloneMethods.NormalClone);
                            break;
                        }
                        else
                        {
                            if (orderedEyes.Count() > 2)
                            {
                                orderedEyes = orderedEyes.Skip(1).ToArray();
                            }
                            else
                            {
                                var angle = 0;

                                //中心はここ
                                var center = new Point(faces[d].X + faces[d].Width * 0.5, faces[d].Y + faces[d].Height * 0.5);
                                var rotateRect = new RotatedRect(center, new Size2f(faceSize.Width * 0.8, faceSize.Height * 0.9), angle);
                                Mat mask = Mat.Zeros(srcMat.Size(), MatType.CV_8UC3);
                                Cv2.Ellipse(mask, rotateRect, new Scalar(255, 255, 255), -1, LineTypes.AntiAlias);
                                //                Cv2.FillPoly(mask, polygons, new Scalar(255, 255, 255));

                                Cv2.SeamlessClone(put1, srcMat, mask, center, srcMat, SeamlessCloneMethods.NormalClone);

                                break;
                            }
                        }
                    }
            }
                else
                {
                    var angle = 0;
                    //中心はここ
                    var center = new Point(faces[d].X + faces[d].Width * 0.5, faces[d].Y + faces[d].Height * 0.5);
                    var rotateRect = new RotatedRect(center, new Size2f(faceSize.Width * 0.8, faceSize.Height * 0.9), angle);
                    Mat mask = Mat.Zeros(srcMat.Size(), MatType.CV_8UC3);
                    Cv2.Ellipse(mask, rotateRect, new Scalar(255, 255, 255), -1, LineTypes.AntiAlias);
                    //                Cv2.FillPoly(mask, polygons, new Scalar(255, 255, 255));
                    Cv2.SeamlessClone(put1, srcMat, mask, center, srcMat, SeamlessCloneMethods.NormalClone);
                }

            }

            return srcMat;
        }
Exemple #10
0
        /// <summary>
        /// Poisson Image Editing
        /// </summary>
        /// <param name="srcMat">顔がある方</param>
        /// <param name="putMat">重ねる顔</param>
        /// <returns></returns>
        public Mat PutMaskOnFace(Mat srcMat, Mat putMat)
        {
            var grayMat = new Mat();
            Cv2.CvtColor(srcMat, grayMat, ColorConversionCodes.BGR2GRAY);
            Cv2.EqualizeHist(grayMat, grayMat);

            var faces = Cascade.DetectMultiScale(grayMat);

            if (faces == null) return srcMat;

            var binaryMat = new Mat();
            int blockSize = 7;
            double k = 0.15;
            double R = 32;
            Binarizer.Sauvola(grayMat, binaryMat, blockSize, k, R);
            Cv2.BitwiseNot(binaryMat, binaryMat);

            var polygons = new List<List<Point>>();

            var faceCount = faces.Count(); // O(n)

            for (int d = 0; d < faceCount; d++)
            {
                polygons = new List<List<Point>>();

                int x1 = faces[d].X;
                int y1 = faces[d].Y;
                int width = faces[d].Width;
                int heigh = faces[d].Height;
                int x2 = x1 + width;
                int y2 = y1 + heigh;

                polygons.Add(new List<Point>() {
                new Point(x1,y1),
                new Point(x2,y1),
                new Point(x2,y2),
                new Point(x1,y2),
                });

                var pwidth = putMat.Width;
                var pheight = putMat.Height;

                //重ねるファイルは少し拡大したほうが良いかな?
                /*                Mat put0 = putMat[(int)(pwidth * 0.1) ,
                                    (int)(pwidth * 0.9),
                                    (int)(pheight * 0.1),
                                    (int)(pheight * 0.9)]
                                    .Resize(new Size(width, heigh), 0, 0, InterpolationFlags.Lanczos4);
                */
                Mat put0 = putMat.Resize(new Size(width, heigh), 0, 0, InterpolationFlags.Lanczos4);

                //真ん中編の色を適当に抽出
                // 改良の余地あり(肌色領域の平均取ったり?)
                MatOfByte3 mat3 = new MatOfByte3(put0); // cv::Mat_<cv::Vec3b>
                var indexer = mat3.GetIndexer();
                Vec3b color = indexer[(int)(put0.Width * 0.5), (int)(put0.Height * 0.5)];

                //抽出した色で埋める
                Mat put1 = new Mat(srcMat.Size(), MatType.CV_8UC3, new Scalar(color.Item0, color.Item1, color.Item2));

                //重ねる範囲にコピー
                put1[y1, y2, x1, x2] = put0;

                Mat mask = Mat.Zeros(srcMat.Size(), MatType.CV_8UC3);
                Cv2.FillPoly(mask, polygons, new Scalar(255, 255, 255));

                //中心はここ
                var center = new Point(faces[d].X + faces[d].Width * 0.5, faces[d].Y + faces[d].Height * 0.5);
                Cv2.SeamlessClone(put1, srcMat, mask, center, srcMat, SeamlessCloneMethods.NormalClone);
            }
            return srcMat;
        }
Exemple #11
0
        public Mat PutEllipseMaskOnFace2(Mat srcMat, Mat putMat)
        {
            var grayMat = new Mat();
            Cv2.CvtColor(srcMat, grayMat, ColorConversionCodes.BGR2GRAY);
            Cv2.EqualizeHist(grayMat, grayMat);

            var faces = Cascade.DetectMultiScale(grayMat);

            if (faces == null) return srcMat;

            var binaryMat = new Mat();
            //            binaryMat = ColorExtractor.ExtractMask(srcMat,ColorConversionCodes.BGR2HSV,ColorVariation.Skin);
            //            return binaryMat;

            int blockSize = 7;
            double k = 1.5;
            double R = 100;
            Binarizer.Sauvola(grayMat, binaryMat, blockSize, k, R);

            Cv2.BitwiseNot(binaryMat, binaryMat);
            return binaryMat;

            var polygons = new List<List<Point>>();

            var faceCount = faces.Count(); // O(n)

            for (int d = 0; d < faceCount; d++)
            {
                polygons = new List<List<Point>>();

                int x1 = faces[d].X;
                int y1 = faces[d].Y;
                int width = faces[d].Width;
                int height = faces[d].Height;
                int x2 = x1 + width;
                int y2 = y1 + height;
                int pwidth = putMat.Width;
                int pheight = putMat.Height;
                int srcWidth = srcMat.Width;
                int srcHeight = srcMat.Height;

                polygons.Add(new List<Point>() {
                new Point(x1,y1),
                new Point(x2,y1),
                new Point(x2,y2),
                new Point(x1,y2),
                });

                // f = fixed
                /*                int fx1 = (int)(x1 - width * 0.01);
                                fx1 = fx1 > 0 ? fx1 : 0;

                                int fx2 = (int)(x2 + width * 0.01);
                                fx2 = fx2 < srcWidth ? fx2 : srcWidth;

                                int fy1 = (int)(y1 - height * 0.01);
                                fy1 = fy1 > 0 ? fy1 : 0;

                                int fy2 = (int)(y2 + height * 0.01);
                                fy2 = fy2 < srcHeight ? fy2 : srcHeight;
                                */

                int fx1 = (int)(x1 + width * 0.1);

                int fx2 = (int)(x2 - width * 0.1);

                int fy1 = (int)(y1 + height * 0.1);

                int fy2 = (int)(y2 - height * 0.1);

                int fwidth = x2 - x1;
                int fheight = y2 - y1;

                var faceSize = new Size(fwidth, fheight);

                //重ねるファイルは少し拡大したほうが良いかな?
                /*                Mat put0 = putMat[(int)(pwidth * 0.1) ,
                                    (int)(pwidth * 0.9),
                                    (int)(pheight * 0.1),
                                    (int)(pheight * 0.9)]
                                    .Resize(new Size(width, heigh), 0, 0, InterpolationFlags.Lanczos4);
                */
                Mat put0 = putMat.Resize(faceSize, 0, 0, InterpolationFlags.Lanczos4);

                //真ん中編の色を適当に抽出
                // 改良の余地あり(肌色領域の平均取ったり?)
                MatOfByte3 mat3 = new MatOfByte3(put0); // cv::Mat_<cv::Vec3b>
                var indexer = mat3.GetIndexer();
                Vec3b color = indexer[(int)(put0.Width * 0.5), (int)(put0.Height * 0.5)];

                //抽出した色で埋める
                Mat put1 = new Mat(srcMat.Size(), MatType.CV_8UC3, new Scalar(color.Item0, color.Item1, color.Item2));

                //重ねる範囲にコピー
                put1[y1, y2, x1, x2] = put0;

                Mat mask = Mat.Zeros(srcMat.Size(), MatType.CV_8UC3);

                //中心はここ
                var center = new Point(faces[d].X + faces[d].Width * 0.5, faces[d].Y + faces[d].Height * 0.5);

                Mat faceAroundMat = Mat.Zeros(srcMat.Size(), MatType.CV_8UC1);

                faceAroundMat[fy1, fy2, fx1, fx2] = binaryMat[fy1, fy2, fx1, fx2];

                //                faceAroundMat[y1, y2, x1, x2] = binaryMat[y1, y2, x1, x2];
                //var countours = new
                // 単純な輪郭抽出のみでは、傾きがわからない
                // 元のAPIが破壊的な関数なので clone http://opencv.jp/opencv-2svn/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-findcontours
                var contours = faceAroundMat.Clone().FindContoursAsArray(RetrievalModes.List, ContourApproximationModes.ApproxNone);

                //要素数が大きい輪郭だけ
                var detectedContours = contours.Where(c =>
                /*Cv2.ContourArea(c) > Cv2.ContourArea(polygons[0]) * 0.05 &&*/ Cv2.ContourArea(c) < Cv2.ContourArea(polygons[0]) * 0.1);

                Mat conMat = Mat.Zeros(srcMat.Size(), MatType.CV_8UC1);
                Cv2.DrawContours(conMat, detectedContours, -1, new Scalar(255, 255, 255));

                return conMat;

                var points = new List<Point>();
                foreach (var dc in detectedContours)
                {
                    points.Union(dc);
                }
                var detectedRotateRect = Cv2.MinAreaRect(points);

                float angle =
                detectedRotateRect.Angle =
                    Math.Abs(detectedRotateRect.Angle) > 20 ?
                    detectedRotateRect.Angle % 20 :
                    detectedRotateRect.Angle;
                float scale = 1.0f;
                // 回転
                Mat matrix = Cv2.GetRotationMatrix2D(center, angle, scale);

                Debug.WriteLine(detectedRotateRect.Angle);
                //画像を回転させる
                Cv2.WarpAffine(put1, put1, matrix, put1.Size());
                var rotateRect = new RotatedRect(center, new Size2f(faceSize.Width, faceSize.Height), detectedRotateRect.Angle);

                continue;

                Cv2.Ellipse(mask, detectedRotateRect, new Scalar(255, 255, 255), -1, LineTypes.AntiAlias);
                //                Cv2.FillPoly(mask, polygons, new Scalar(255, 255, 255));

                Cv2.SeamlessClone(put1, srcMat, mask, center, srcMat, SeamlessCloneMethods.NormalClone);
            }

            return srcMat;
        }
    public static void render_2D(ref OpenCvSharp.Mat left_display, sl.float2 img_scale, ref sl.Objects objects, bool showOnlyOK)
    {
        OpenCvSharp.Mat  overlay    = left_display.Clone();
        OpenCvSharp.Rect roi_render = new OpenCvSharp.Rect(1, 1, left_display.Size().Width, left_display.Size().Height);

        for (int i = 0; i < objects.numObject; i++)
        {
            sl.ObjectData obj = objects.objectData[i];
            if (renderObject(obj, showOnlyOK))
            {
                // Draw Skeleton bones
                OpenCvSharp.Scalar base_color = generateColorID(obj.id);
                foreach (var part in SKELETON_BONES)
                {
                    var kp_a = cvt(obj.keypoints2D[(int)part.Item1], img_scale);
                    var kp_b = cvt(obj.keypoints2D[(int)part.Item2], img_scale);
                    if (roi_render.Contains(kp_a) && roi_render.Contains(kp_b))
                    {
                        Cv2.Line(left_display, kp_a, kp_b, base_color, 1, LineTypes.AntiAlias);
                    }
                }

                var hip_left  = obj.keypoints2D[(int)sl.BODY_PARTS.LEFT_HIP];
                var hip_right = obj.keypoints2D[(int)sl.BODY_PARTS.RIGHT_HIP];
                var spine     = (hip_left + hip_right) / 2;
                var neck      = obj.keypoints2D[(int)sl.BODY_PARTS.NECK];

                if (hip_left.X > 0 && hip_left.Y > 0 && hip_right.X > 0 && hip_right.Y > 0 && neck.X > 0 && neck.Y > 0)
                {
                    var spine_a = cvt(spine, img_scale);
                    var spine_b = cvt(neck, img_scale);
                    if (roi_render.Contains(spine_a) && roi_render.Contains(spine_b))
                    {
                        Cv2.Line(left_display, spine_a, spine_b, base_color, 1, LineTypes.AntiAlias);
                    }
                }

                // Draw Skeleton joints
                foreach (var kp in obj.keypoints2D)
                {
                    Point cv_kp = cvt(kp, img_scale);
                    if (roi_render.Contains(cv_kp))
                    {
                        Cv2.Circle(left_display, cv_kp, 3, base_color, -1);
                    }
                }

                if (hip_left.X > 0 && hip_left.Y > 0 && hip_right.X > 0 && hip_right.Y > 0)
                {
                    Point cv_spine = cvt(spine, img_scale);
                    if (roi_render.Contains(cv_spine))
                    {
                        Cv2.Circle(left_display, cv_spine, 3, base_color, -1);
                    }
                }
            }
        }

        // Here, overlay is as the left image, but with opaque masks on each detected objects
        Cv2.AddWeighted(left_display, 0.9, overlay, 0.1, 0.0, left_display);
    }
Exemple #13
0
        /// <summary>
        /// utility function: convert one image to another with optional vertical flip
        /// </summary>
        /// <param name="src"></param>
        /// <param name="dst"></param>
        /// <param name="flags"></param>
        public static void ConvertImage(Mat src, Mat dst, ConvertImageModes flags = ConvertImageModes.None)
        {
            if (src == null)
                throw new ArgumentNullException("src");
            if (dst == null) 
                throw new ArgumentNullException("dst");
            src.ThrowIfDisposed();
            dst.ThrowIfDisposed();
            
            dst.Create(src.Size(), MatType.CV_8UC3);
            NativeMethods.imgcodecs_cvConvertImage_Mat(src.CvPtr, dst.CvPtr, (int)flags);

            GC.KeepAlive(src);
            GC.KeepAlive(dst);
        }
Exemple #14
0
        public void Run()
        {
            Mat img = Cv2.ImRead(FilePath.Image.Lenna, ImreadModes.GrayScale);

            // expand input image to optimal size
            Mat padded = new Mat(); 
            int m = Cv2.GetOptimalDFTSize(img.Rows);
            int n = Cv2.GetOptimalDFTSize(img.Cols); // on the border add zero values
            Cv2.CopyMakeBorder(img, padded, 0, m - img.Rows, 0, n - img.Cols, BorderTypes.Constant, Scalar.All(0));
            
            // Add to the expanded another plane with zeros
            Mat paddedF32 = new Mat();
            padded.ConvertTo(paddedF32, MatType.CV_32F);
            Mat[] planes = { paddedF32, Mat.Zeros(padded.Size(), MatType.CV_32F) };
            Mat complex = new Mat();
            Cv2.Merge(planes, complex);         

            // this way the result may fit in the source matrix
            Mat dft = new Mat();
            Cv2.Dft(complex, dft);            

            // compute the magnitude and switch to logarithmic scale
            // => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
            Mat[] dftPlanes;
            Cv2.Split(dft, out dftPlanes);  // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))

            // planes[0] = magnitude
            Mat magnitude = new Mat();
            Cv2.Magnitude(dftPlanes[0], dftPlanes[1], magnitude);

            magnitude += Scalar.All(1);  // switch to logarithmic scale
            Cv2.Log(magnitude, magnitude);

            // crop the spectrum, if it has an odd number of rows or columns
            Mat spectrum = magnitude[
                new Rect(0, 0, magnitude.Cols & -2, magnitude.Rows & -2)];

            // rearrange the quadrants of Fourier image  so that the origin is at the image center
            int cx = spectrum.Cols / 2;
            int cy = spectrum.Rows / 2;

            Mat q0 = new Mat(spectrum, new Rect(0, 0, cx, cy));   // Top-Left - Create a ROI per quadrant
            Mat q1 = new Mat(spectrum, new Rect(cx, 0, cx, cy));  // Top-Right
            Mat q2 = new Mat(spectrum, new Rect(0, cy, cx, cy));  // Bottom-Left
            Mat q3 = new Mat(spectrum, new Rect(cx, cy, cx, cy)); // Bottom-Right

            // swap quadrants (Top-Left with Bottom-Right)
            Mat tmp = new Mat();                           
            q0.CopyTo(tmp);
            q3.CopyTo(q0);
            tmp.CopyTo(q3);

            // swap quadrant (Top-Right with Bottom-Left)
            q1.CopyTo(tmp);                    
            q2.CopyTo(q1);
            tmp.CopyTo(q2);

            // Transform the matrix with float values into a
            Cv2.Normalize(spectrum, spectrum, 0, 1, NormTypes.MinMax); 
                                     
            // Show the result
            Cv2.ImShow("Input Image"       , img);
            Cv2.ImShow("Spectrum Magnitude", spectrum);

            // calculating the idft
            Mat inverseTransform = new Mat();
            Cv2.Dft(dft, inverseTransform, DftFlags.Inverse | DftFlags.RealOutput);
            Cv2.Normalize(inverseTransform, inverseTransform, 0, 1, NormTypes.MinMax);
            Cv2.ImShow("Reconstructed by Inverse DFT", inverseTransform);
            Cv2.WaitKey();
        }
Exemple #15
0
        static bool RunOn(string file, OpenCvSharp.Rect boundingBox)
        {
            int areas = 0;

            int[] quadrants = new int[4];
            using (OpenCvSharp.Mat m = new OpenCvSharp.Mat(file, OpenCvSharp.ImreadModes.Grayscale))
            {
                //blur the image a little
                using (var blurred = m.GaussianBlur(new Size(3, 3), 0))
                {
                    //make the image binary black or white and make black the background color
                    using (var g = blurred.Threshold(200, 255, ThresholdTypes.BinaryInv | ThresholdTypes.Otsu))
                    {
                        var element = Cv2.GetStructuringElement(
                            MorphShapes.Rect,
                            new Size(50, 1));
                        //remove lines from dark background image by creating a mask
                        using (var mask = g.MorphologyEx(MorphTypes.Open, element, iterations: 2))
                        {
                            using (Mat newMask = new Mat())
                            {
                                //mask bits should be 0 to skip copying items
                                Cv2.BitwiseNot(mask, newMask);



                                using (Mat newImage = new Mat())
                                {
                                    //make new image and apply mask so as to not copy the lines
                                    g.CopyTo(newImage, newMask);

                                    //create the box image
                                    using (OpenCvSharp.Mat box = new OpenCvSharp.Mat(new Size(boundingBox.Width, boundingBox.Height), MatType.CV_8U))
                                    {
                                        //copy to the box
                                        newImage[boundingBox].CopyTo(box);



                                        using (Mat labels = new Mat())
                                        {
                                            using (var centroids = new Mat())
                                            {
                                                using (Mat stats = new Mat())
                                                {
                                                    //find the white blobs
                                                    //populate the quadrants blobs appear in
                                                    //create total area of white stuff

                                                    int cnt = Cv2.ConnectedComponentsWithStats(box, labels, stats, centroids, PixelConnectivity.Connectivity8);
#if usequadrants
                                                    int qh = box.Size().Height / 2;
                                                    int qw = box.Size().Width / 2;

                                                    var tl = new Rect(0, 0, qw, qh);
                                                    var vl = new Rect(0, qh, qw, qh);
                                                    var tr = new Rect(qw, 0, qw, qh);
                                                    var br = new Rect(qw, qh, qw, qh);
#endif
                                                    for (var x = 1; x < stats.Size().Height; x++)
                                                    {
                                                        #if usequadrants
                                                        var left   = stats.Get <int>(x, (int)ConnectedComponentsTypes.Left);
                                                        var top    = stats.Get <int>(x, (int)ConnectedComponentsTypes.Top);
                                                        var width  = stats.Get <int>(x, (int)ConnectedComponentsTypes.Width);
                                                        var height = stats.Get <int>(x, (int)ConnectedComponentsTypes.Height);

                                                        var re = new Rect(left, top, width, height);
                                                        if (re.IntersectsWith(tl))
                                                        {
                                                            quadrants[0] = 1;
                                                        }
                                                        if (re.IntersectsWith(vl))
                                                        {
                                                            quadrants[1] = 1;
                                                        }
                                                        if (re.IntersectsWith(tr))
                                                        {
                                                            quadrants[2] = 1;
                                                        }
                                                        if (re.IntersectsWith(br))
                                                        {
                                                            quadrants[3] = 1;
                                                        }
#endif
                                                        areas += stats.Get <int>(x, (int)ConnectedComponentsTypes.Area);
                                                    }
                                                }
                                            }
                                        }

                                        var boxarea = box.Size().Width *box.Size().Height;



                                        double[] areasTest = new double[] { areas };
                                        double[] boxAreas  = new double[] { boxarea };


                                        //use infer.net to determine if the mean is good or not
                                        VariableArray <bool> ytest = Variable.Array <bool>(new Range(areasTest.Length));
                                        BayesPointMachine(areasTest, boxAreas, Variable.Random(wPosterior), ytest);
                                        var res  = (DistributionStructArray <Bernoulli, bool>)engine.Infer(ytest);
                                        var mean = res[0].GetMean();


                                        Console.WriteLine(boxarea + " " + areas + " " + mean + " "
                                            #if usequadrants
                                                          + quadrants.Sum());