public b2Vec2 GetSearchDirection()
        {
            switch (m_count)
            {
            case 1:
                return(-m_vertices[0].w);

            case 2:
            {
                b2Vec2 e12 = m_vertices[1].w - m_vertices[0].w;
                float  sgn = b2Math.b2Cross(e12, -m_vertices[0].w);
                if (sgn > 0.0f)
                {
                    // Origin is left of e12.
                    return(e12.NegUnitCross()); //  b2Math.b2Cross(1.0f, e12);
                }
                else
                {
                    // Origin is right of e12.
                    return(e12.UnitCross()); // b2Math.b2Cross(e12, 1.0f);
                }
            }

            default:
                Debug.Assert(false);
                return(b2Vec2.Zero);
            }
        }
Example #2
0
        public virtual void WarmStart()
        {
            // Warm start.
            for (int i = 0; i < m_count; ++i)
            {
                b2ContactVelocityConstraint vc = m_velocityConstraints[i];

                int   indexA     = vc.indexA;
                int   indexB     = vc.indexB;
                float mA         = vc.invMassA;
                float iA         = vc.invIA;
                float mB         = vc.invMassB;
                float iB         = vc.invIB;
                int   pointCount = vc.pointCount;

                b2Vec2 vA = m_velocities[indexA].v;
                float  wA = m_velocities[indexA].w;
                b2Vec2 vB = m_velocities[indexB].v;
                float  wB = m_velocities[indexB].w;

                b2Vec2 normal  = vc.normal;
                b2Vec2 tangent = normal.UnitCross(); //  b2Math.b2Cross(normal, 1.0f);

                for (int j = 0; j < pointCount; ++j)
                {
                    b2VelocityConstraintPoint vcp = vc.points[j];
                    b2Vec2 P = vcp.normalImpulse * normal + vcp.tangentImpulse * tangent;
                    wA -= iA * b2Math.b2Cross(ref vcp.rA, ref P);
                    vA -= mA * P;
                    wB += iB * b2Math.b2Cross(ref vcp.rB, ref P);
                    vB += mB * P;
                }

                m_velocities[indexA].v = vA;
                m_velocities[indexA].w = wA;
                m_velocities[indexB].v = vB;
                m_velocities[indexB].w = wB;
            }
        }
Example #3
0
        public virtual void SolveVelocityConstraints()
        {
            for (int i = 0; i < m_count; ++i)
            {
                b2ContactVelocityConstraint vc = m_velocityConstraints[i];

                int   indexA     = vc.indexA;
                int   indexB     = vc.indexB;
                float mA         = vc.invMassA;
                float iA         = vc.invIA;
                float mB         = vc.invMassB;
                float iB         = vc.invIB;
                int   pointCount = vc.pointCount;

                b2Vec2 vA = m_velocities[indexA].v;
                float  wA = m_velocities[indexA].w;
                b2Vec2 vB = m_velocities[indexB].v;
                float  wB = m_velocities[indexB].w;

                b2Vec2 normal   = vc.normal;
                b2Vec2 tangent  = normal.UnitCross(); // b2Math.b2Cross(normal, 1.0f);
                float  friction = vc.friction;

                Debug.Assert(pointCount == 1 || pointCount == 2);

                // Solve tangent constraints first because non-penetration is more important
                // than friction.
                for (int j = 0; j < pointCount; ++j)
                {
                    b2VelocityConstraintPoint vcp = vc.points[j];

                    // Relative velocity at contact

                    /*
                     *  b.m_x = -s * a.m_y;
                     *  b.m_y = s * a.m_x;
                     */

                    // b2Vec2 dv = vB + b2Math.b2Cross(wB, ref vcp.rB) - vA - b2Math.b2Cross(wA, ref vcp.rA);
                    b2Vec2 dv;
                    dv.x = vB.x + (-wB * vcp.rB.y) - vA.x - (-wA * vcp.rA.y);
                    dv.y = vB.y + (wB * vcp.rB.x) - vA.y - (wA * vcp.rA.x);

                    // Compute tangent force
                    float vt     = dv.x * tangent.x + dv.y * tangent.y; // b2Math.b2Dot(dv, tangent);
                    float lambda = vcp.tangentMass * (-vt);

                    // b2Math.b2Clamp the accumulated force
                    float maxFriction = friction * vcp.normalImpulse;
                    float newImpulse  = b2Math.b2Clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction);
                    lambda             = newImpulse - vcp.tangentImpulse;
                    vcp.tangentImpulse = newImpulse;

                    // Apply contact impulse
                    // P = lambda * tangent;
                    b2Vec2 P;
                    P.x = lambda * tangent.x;
                    P.y = lambda * tangent.y;

                    // vA -= mA * P;
                    vA.x -= mA * P.x;
                    vA.y -= mA * P.y;

                    // wA -= iA * b2Math.b2Cross(vcp.rA, P);
                    wA -= iA * (vcp.rA.x * P.y - vcp.rA.y * P.x);

                    // vB += mB * P;
                    vB.x += mB * P.x;
                    vB.y += mB * P.y;

                    // wB += iB * b2Math.b2Cross(vcp.rB, P);
                    wB += iB * (vcp.rB.x * P.y - vcp.rB.y * P.x);

                    //vc.points[j] = vcp;
                }

                // Solve normal constraints
                if (vc.pointCount == 1)
                {
                    b2VelocityConstraintPoint vcp = vc.points[0];

                    // Relative velocity at contact
                    // b2Vec2 dv = vB + b2Math.b2Cross(wB, ref vcp.rB) - vA - b2Math.b2Cross(wA, ref vcp.rA);
                    b2Vec2 dv;
                    dv.x = vB.x + (-wB * vcp.rB.y) - vA.x - (-wA * vcp.rA.y);
                    dv.y = vB.y + (wB * vcp.rB.x) - vA.y - (wA * vcp.rA.x);

                    // Compute normal impulse
                    float vn     = dv.x * normal.x + dv.y * normal.y; //b2Math.b2Dot(ref dv, ref normal);
                    float lambda = -vcp.normalMass * (vn - vcp.velocityBias);

                    // b2Math.b2Clamp the accumulated impulse
                    float newImpulse = Math.Max(vcp.normalImpulse + lambda, 0.0f);
                    lambda            = newImpulse - vcp.normalImpulse;
                    vcp.normalImpulse = newImpulse;

                    // Apply contact impulse
                    //b2Vec2 P = lambda * normal;
                    b2Vec2 P;
                    P.x = lambda * normal.x;
                    P.y = lambda * normal.y;

                    // vA -= mA * P;
                    vA.x -= mA * P.x;
                    vA.y -= mA * P.y;

                    // wA -= iA * b2Math.b2Cross(vcp.rA, P);
                    wA -= iA * (vcp.rA.x * P.y - vcp.rA.y * P.x);

                    // vB += mB * P;
                    vB.x += mB * P.x;
                    vB.y += mB * P.y;

                    // wB += iB * b2Math.b2Cross(vcp.rB, P);
                    wB += iB * (vcp.rB.x * P.y - vcp.rB.y * P.x);

                    //vc.points[0] = vcp;
                }
                else
                {
                    // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
                    // Build the mini LCP for this contact patch
                    //
                    // vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
                    //
                    // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
                    // b = vn0 - velocityBias
                    //
                    // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
                    // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
                    // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
                    // solution that satisfies the problem is chosen.
                    //
                    // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
                    // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
                    //
                    // Substitute:
                    //
                    // x = a + d
                    //
                    // a := old total impulse
                    // x := new total impulse
                    // d := incremental impulse
                    //
                    // For the current iteration we extend the formula for the incremental impulse
                    // to compute the new total impulse:
                    //
                    // vn = A * d + b
                    //    = A * (x - a) + b
                    //    = A * x + b - A * a
                    //    = A * x + b'
                    // b' = b - A * a;

                    b2VelocityConstraintPoint cp1 = vc.points[0];
                    b2VelocityConstraintPoint cp2 = vc.points[1];

                    b2Vec2 a = new b2Vec2(cp1.normalImpulse, cp2.normalImpulse);
                    Debug.Assert(a.x >= 0.0f && a.y >= 0.0f);

                    // Relative velocity at contact
                    // vB + b2Math.b2Cross(wB, ref cp1.rB) - vA - b2Math.b2Cross(wA, ref cp1.rA);
                    b2Vec2 dv1;
                    dv1.x = vB.x + (-wB * cp1.rB.y) - vA.x - (-wA * cp1.rA.y);
                    dv1.y = vB.y + (wB * cp1.rB.x) - vA.y - (wA * cp1.rA.x);

                    // vB + b2Math.b2Cross(wB, ref cp2.rB) - vA - b2Math.b2Cross(wA, ref cp2.rA);
                    b2Vec2 dv2;
                    dv2.x = vB.x + (-wB * cp2.rB.y) - vA.x - (-wA * cp2.rA.y);
                    dv2.y = vB.y + (wB * cp2.rB.x) - vA.y - (wA * cp2.rA.x);

                    // Compute normal velocity
                    float vn1 = dv1.x * normal.x + dv1.y * normal.y; // b2Math.b2Dot(ref dv1, ref normal);
                    float vn2 = dv2.x * normal.x + dv2.y * normal.y; // b2Math.b2Dot(ref dv2, ref normal);

                    b2Vec2 b;
                    b.x = vn1 - cp1.velocityBias;
                    b.y = vn2 - cp2.velocityBias;

                    // Compute b'
                    // (A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y)
                    b.x -= (vc.K.ex.x * a.x + vc.K.ey.x * a.y);
                    b.y -= (vc.K.ex.y * a.x + vc.K.ey.y * a.y);
                    // b -= b2Math.b2Mul(vc.K, a);

                    //            float k_errorTol = 1e-3f;
                    #region Iteration
                    while (true)
                    {
                        //
                        // Case 1: vn = 0
                        //
                        // 0 = A * x + b'
                        //
                        // Solve for x:
                        //
                        // x = - inv(A) * b'
                        //
                        b2Vec2 x = -b2Math.b2Mul(ref vc.normalMass, ref b);

                        if (x.x >= 0.0f && x.y >= 0.0f)
                        {
                            // Get the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + b2Math.b2Cross(wB, cp1.rB) - vA - b2Math.b2Cross(wA, cp1.rA);
                            dv2 = vB + b2Math.b2Cross(wB, cp2.rB) - vA - b2Math.b2Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn1 = b2Math.b2Dot(dv1, normal);
                            vn2 = b2Math.b2Dot(dv2, normal);

                            Debug.Assert(b2Abs(vn1 - cp1.velocityBias) < k_errorTol);
                            Debug.Assert(b2Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 2: vn1 = 0 and x2 = 0
                        //
                        //   0 = a11 * x1 + a12 * 0 + b1'
                        // vn2 = a21 * x1 + a22 * 0 + b2'
                        //
                        x.x = -cp1.normalMass * b.x;
                        x.y = 0.0f;
                        vn1 = 0.0f;
                        vn2 = vc.K.ex.y * x.x + b.y;

                        if (x.x >= 0.0f && vn2 >= 0.0f)
                        {
                            // Get the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv1 = vB + b2Math.b2Cross(wB, cp1.rB) - vA - b2Math.b2Cross(wA, cp1.rA);

                            // Compute normal velocity
                            vn1 = b2Math.b2Dot(dv1, normal);

                            Debug.Assert(b2Abs(vn1 - cp1.velocityBias) < k_errorTol);
#endif
                            break;
                        }


                        //
                        // Case 3: vn2 = 0 and x1 = 0
                        //
                        // vn1 = a11 * 0 + a12 * x2 + b1'
                        //   0 = a21 * 0 + a22 * x2 + b2'
                        //
                        x.x = 0.0f;
                        x.y = -cp2.normalMass * b.y;
                        vn1 = vc.K.ey.x * x.y + b.x;
                        vn2 = 0.0f;

                        if (x.y >= 0.0f && vn1 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

#if B2_DEBUG_SOLVER
                            // Postconditions
                            dv2 = vB + b2Math.b2Cross(wB, cp2.rB) - vA - b2Math.b2Cross(wA, cp2.rA);

                            // Compute normal velocity
                            vn2 = b2Math.b2Dot(dv2, normal);

                            Debug.Assert(b2Abs(vn2 - cp2.velocityBias) < k_errorTol);
#endif
                            break;
                        }

                        //
                        // Case 4: x1 = 0 and x2 = 0
                        //
                        // vn1 = b1
                        // vn2 = b2;
                        x.x = 0.0f;
                        x.y = 0.0f;
                        vn1 = b.x;
                        vn2 = b.y;

                        if (vn1 >= 0.0f && vn2 >= 0.0f)
                        {
                            // Resubstitute for the incremental impulse
                            b2Vec2 d = x - a;

                            // Apply incremental impulse
                            b2Vec2 P1 = d.x * normal;
                            b2Vec2 P2 = d.y * normal;
                            vA -= mA * (P1 + P2);
                            wA -= iA * (b2Math.b2Cross(ref cp1.rA, ref P1) + b2Math.b2Cross(ref cp2.rA, ref P2));

                            vB += mB * (P1 + P2);
                            wB += iB * (b2Math.b2Cross(ref cp1.rB, ref P1) + b2Math.b2Cross(ref cp2.rB, ref P2));

                            // Accumulate
                            cp1.normalImpulse = x.x;
                            cp2.normalImpulse = x.y;

                            break;
                        }


                        // No solution, give up. This is hit sometimes, but it doesn't seem to matter.
                        break;
                    }
                    #endregion

                    //vc.points[0] = cp1;
                    //vc.points[1] = cp2;
                }

                m_velocities[indexA].v = vA;
                m_velocities[indexA].w = wA;
                m_velocities[indexB].v = vB;
                m_velocities[indexB].w = wB;

                //m_velocityConstraints[i] = vc;
            }
        }
Example #4
0
        // TODO_ERIN might not need to return the separation

        public float Initialize(ref b2SimplexCache cache,
                                b2DistanceProxy proxyA, ref b2Sweep sweepA,
                                b2DistanceProxy proxyB, ref b2Sweep sweepB,
                                float t1)
        {
            m_proxyA = proxyA;
            m_proxyB = proxyB;
            int count = cache.count;

            Debug.Assert(0 < count && count < 3);

            m_sweepA = sweepA;
            m_sweepB = sweepB;

            b2Transform xfA, xfB;

            m_sweepA.GetTransform(out xfA, t1);
            m_sweepB.GetTransform(out xfB, t1);

            if (count == 1)
            {
                m_type = SeparationType.e_points;
                b2Vec2 localPointA = m_proxyA.GetVertex((int)cache.indexA[0]);
                b2Vec2 localPointB = m_proxyB.GetVertex((int)cache.indexB[0]);
                b2Vec2 pointA      = b2Math.b2Mul(xfA, localPointA);
                b2Vec2 pointB      = b2Math.b2Mul(xfB, localPointB);
                m_axis = pointB - pointA;
                float s = m_axis.Normalize();
                return(s);
            }
            else if (cache.indexA[0] == cache.indexA[1])
            {
                // Two points on B and one on A.
                m_type = SeparationType.e_faceB;
                b2Vec2 localPointB1 = proxyB.GetVertex((int)cache.indexB[0]);
                b2Vec2 localPointB2 = proxyB.GetVertex((int)cache.indexB[1]);

                float b21x = localPointB2.x - localPointB1.x;
                float b21y = localPointB2.y - localPointB1.y;
                m_axis.x = -b21y;
                m_axis.y = b21x;

                // m_axis = b2Math.b2Cross(localPointB2 - localPointB1, 1.0f);
                m_axis.Normalize();
                b2Vec2 normal = b2Math.b2Mul(xfB.q, m_axis);

                m_localPoint = 0.5f * (localPointB1 + localPointB2);
                b2Vec2 pointB = b2Math.b2Mul(xfB, m_localPoint);

                b2Vec2 localPointA = proxyA.GetVertex((int)cache.indexA[0]);
                b2Vec2 pointA      = b2Math.b2Mul(xfA, localPointA);

                b2Vec2 aminusb = pointA - pointB;
                float  s       = b2Math.b2Dot(ref aminusb, ref normal);
                if (s < 0.0f)
                {
                    m_axis = -m_axis;
                    s      = -s;
                }
                return(s);
            }
            else
            {
                // Two points on A and one or two points on B.
                m_type = SeparationType.e_faceA;
                b2Vec2 localPointA1 = m_proxyA.GetVertex(cache.indexA[0]);
                b2Vec2 localPointA2 = m_proxyA.GetVertex(cache.indexA[1]);
                b2Vec2 a2minusa1    = localPointA2 - localPointA1;
                m_axis = a2minusa1.UnitCross();// b2Math.b2Cross(localPointA2 - localPointA1, 1.0f);
                m_axis.Normalize();
                b2Vec2 normal = b2Math.b2Mul(xfA.q, m_axis);

                m_localPoint = 0.5f * (localPointA1 + localPointA2);
                b2Vec2 pointA = b2Math.b2Mul(xfA, m_localPoint);

                b2Vec2 localPointB = m_proxyB.GetVertex(cache.indexB[0]);
                b2Vec2 pointB      = b2Math.b2Mul(xfB, localPointB);
                b2Vec2 bminusa     = pointB - pointA;
                float  s           = b2Math.b2Dot(ref bminusa, ref normal);
                if (s < 0.0f)
                {
                    m_axis = -m_axis;
                    s      = -s;
                }
                return(s);
            }
        }