示例#1
0
        public static HashSet<LTSState> Solve(MuFormula formula, LTS lts, Environment env, bool init = true)
        {
            if (init) {
                var allVariables = new List<Variable>();
                if (formula is Variable) allVariables.Add((Variable)formula);
                allVariables.AddRange(formula.AllSubFormulas.OfType<Variable>());
                allVariables.AddRange(formula.AllSubFormulas.OfType<Mu>().Select(mu => mu.Variable));
                allVariables.AddRange(formula.AllSubFormulas.OfType<Nu>().Select(nu => nu.Variable));
                Init(allVariables.Distinct(), lts, env);
            }

            if (formula is Proposition) {
                var prop = formula as Proposition;
                return bool.Parse(prop.Value) ? lts.States : new HashSet<LTSState>();
            }

            else if (formula is Variable) {
                return env.GetVariable(formula as Variable);
            }

            else if (formula is Negation) {
                var neg = formula as Negation;
                return new HashSet<LTSState>(lts.States.Except(
                    Solve(neg.Formula, lts, env, false)));
            }

            else if (formula is Conjunction) {
                var conj = formula as Conjunction;
                var leftStates = Solve(conj.Left, lts, env, false);
                var rightStates = Solve(conj.Right, lts, env, false);
                return new HashSet<LTSState>(leftStates.Intersect(rightStates));
            }

            else if (formula is Disjunction) {
                var disj = formula as Disjunction;
                var leftStates = Solve(disj.Left, lts, env, false);
                var rightStates = Solve(disj.Right, lts, env, false);
                return new HashSet<LTSState>(leftStates.Union(rightStates));
            }

            else if (formula is Box) {
                var box = formula as Box;

                // box a f = { s | forall t. s -a-> t ==> t in [[f]]e }
                // i.e. the set of states for which all a-transitions go to a state in which f holds
                var fe = Solve(box.Formula, lts, env, false);

                var hashSet = new HashSet<LTSState>();
                foreach (var state in lts.States) {
                    var outTransitions = state.GetOutTransitions(box.RegularFormula);
                    if (outTransitions.All(tr => fe.Contains(tr.Right)))
                        hashSet.Add(state);
                }
                return hashSet;
            }

            else if (formula is Diamond) {
                var diamond = formula as Diamond;
                var shorthand = new Negation(
                    // <a>f == [a](not f)
                    new Box(diamond.RegularFormula, new Negation(diamond.Formula))
                    );
                return Solve(shorthand, lts, env, false);
            }

            else if (formula is Mu) {
                var mu = formula as Mu;
                if (mu.Parent is Nu) {
                    // surrounding binder is nu
                    // reset open subformulae of form mu Xk.g set env[k]=false
                    foreach (var innerMu in formula.AllSubFormulas.OfType<Mu>().Where(m => m.FreeVariables.Count > 0))
                        env[innerMu.Variable] = new HashSet<LTSState>();
                }

                HashSet<LTSState> Xold;
                do {
                    Xold = env.GetVariable(mu.Variable);
                    env[mu.Variable] = Solve(mu.Formula, lts, env, false);
                } while (Xold.Count != env[mu.Variable].Count);
                return env[mu.Variable];
            }

            else if (formula is Nu) {
                var nu = formula as Nu;
                if (nu.Parent is Mu) {
                    // surrounding binder is mu
                    // reset open subformulae of form nu Xk.g set env[k]=true
                    foreach (var innerNu in formula.AllSubFormulas.OfType<Nu>().Where(m => m.FreeVariables.Count > 0))
                        env[innerNu.Variable] = lts.States;
                }

                HashSet<LTSState> Xold;
                do {
                    Xold = env.GetVariable(nu.Variable);
                    env[nu.Variable] = Solve(nu.Formula, lts, env, false);
                } while (Xold.Count != env[nu.Variable].Count);
                return env[nu.Variable];
            }

            throw new InvalidDataException("formula not valid in our grammar");
        }
示例#2
0
        public static HashSet<LTSState> Solve(MuFormula formula, LTS lts, Environment env)
        {
            if (formula is Proposition) {
                var prop = formula as Proposition;
                return bool.Parse(prop.Value) ? lts.States : new HashSet<LTSState>();
            }

            else if (formula is Variable) {
                return env.GetVariable(formula as Variable);
            }

            else if (formula is Negation) {
                var neg = formula as Negation;
                return new HashSet<LTSState>(lts.States.Except(
                    Solve(neg.Formula, lts, env)));
            }

            else if (formula is Conjunction) {
                var conj = formula as Conjunction;
                var leftStates = Solve(conj.Left, lts, env);
                var rightStates = Solve(conj.Right, lts, env);
                return new HashSet<LTSState>(leftStates.Intersect(rightStates));
            }

            else if (formula is Disjunction) {
                var disj = formula as Disjunction;
                var leftStates = Solve(disj.Left, lts, env);
                var rightStates = Solve(disj.Right, lts, env);
                return new HashSet<LTSState>(leftStates.Union(rightStates));
            }

            else if (formula is Box) {
                var box = formula as Box;

                // box a f = { s | forall t. s -a-> t ==> t in [[f]]e }
                // i.e. the set of states for which all a-transitions go to a state in which f holds
                var fe = Solve(box.Formula, lts, env);

                return new HashSet<LTSState>(lts.States.Where(
                    // states where, for all outtransitions with action a, the Formula holds in the direct successor
                    state => state.GetOutTransitions(box.RegularFormula).All(tr => fe.Contains(tr.Right))
                ));
            }

            else if (formula is Diamond) {
                var diamond = formula as Diamond;
                var shorthand = new Negation(
                    // <a>f == [a](not f)
                    new Box(diamond.RegularFormula, new Negation(diamond.Formula))
                    );
                return Solve(shorthand, lts, env);
            }

            else if (formula is Mu) {
                var mu = formula as Mu;
                env[mu.Variable] = new HashSet<LTSState>();

                return FixedPoint.LFP(delegate(Tuple<HashSet<LTSState>, LTS, Environment> tuple) {
                    // repeats tau: X := solve(f)
                    var X = tuple.Item1;
                    X = Solve(mu.Formula, lts, env);
                    env[mu.Variable] = X;
                    return Tuple.Create(X, lts, env);
                }, lts, env);
            }

            else if (formula is Nu) {
                var nu = formula as Nu;
                env[nu.Variable] = lts.States;

                return FixedPoint.GFP(delegate(Tuple<HashSet<LTSState>, LTS, Environment> tuple) {
                    // repeats tau: X := solve(f)
                    var X = tuple.Item1;
                    X = Solve(nu.Formula, lts, env);
                    env[nu.Variable] = X;

                    return Tuple.Create(X, lts, env);
                }, lts, env);

            }

            throw new InvalidDataException("not a valid formula in our grammar");
        }