//***********************************************************************
		// Tests the correct implementation of sqrt() method.
		//***********************************************************************

		internal static void SqrtTest(int rounds)
		{
			Random rand = new Random();
			for (int count = 0; count < rounds; count++)
			{
				// generate data of random length
				int t1 = 0;
				while (t1 == 0)
					t1 = (int)(rand.NextDouble() * 1024);

				Console.Write("Round = " + count);

				BigInteger a = new BigInteger();
				a.GenerateRandomBits(t1, rand);

				BigInteger b = a.Sqrt();
				BigInteger c = (b + 1) * (b + 1);

				// check that b is the largest integer such that b*b <= a
				if (c <= a)
				{
					Console.WriteLine("\nError at round " + count);
					Console.WriteLine(a + "\n");
					return;
				}
				Console.WriteLine(" <PASSED>.");
			}
		}
		private static bool LucasStrongTestHelper(BigInteger thisVal)
		{
			unchecked
			{
				// Do the test (selects D based on Selfridge)
				// Let D be the first element of the sequence
				// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
				// Let P = 1, Q = (1-D) / 4

				long D = 5, sign = -1, dCount = 0;
				bool done = false;

				while (!done)
				{
					int Jresult = Jacobi(D, thisVal);

					if (Jresult == -1)
						done = true; // J(D, this) = 1
					else
					{
						if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found
							return false;

						if (dCount == 20)
						{
							// check for square
							BigInteger root = thisVal.Sqrt();
							if (root * root == thisVal)
								return false;
						}

						//Console.WriteLine(D);
						D = (Math.Abs(D) + 2) * sign;
						sign = -sign;
					}
					dCount++;
				}

				long Q = (1 - D) >> 2;

				/*
						Console.WriteLine("D = " + D);
						Console.WriteLine("Q = " + Q);
						Console.WriteLine("(n,D) = " + thisVal.gcd(D));
						Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
						Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
						*/

				BigInteger p_add1 = thisVal + 1;
				int s = 0;

				for (int index = 0; index < p_add1.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((p_add1.data[index] & mask) != 0)
						{
							index = p_add1.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						s++;
					}
				}

				BigInteger t = p_add1 >> s;

				// calculate constant = b^(2k) / m
				// for Barrett Reduction
				BigInteger constant = new BigInteger();

				int nLen = thisVal.dataLength << 1;
				constant.data[nLen] = 0x00000001;
				constant.dataLength = nLen + 1;

				constant = constant / thisVal;

				BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
				bool isPrime = false;

				if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
					(lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
				{
					// u(t) = 0 or V(t) = 0
					isPrime = true;
				}

				for (int i = 1; i < s; i++)
				{
					if (!isPrime)
					{
						// doubling of index
						lucas[1] = BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
						lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

						//lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

						if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
							isPrime = true;
					}

					lucas[2] = BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k
				}

				if (isPrime) // additional checks for composite numbers
				{
					// If n is prime and gcd(n, Q) == 1, then
					// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

					BigInteger g = thisVal.Gcd(Q);
					if (g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1
					{
						if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
							lucas[2] += thisVal;

						BigInteger temp = (Q * Jacobi(Q, thisVal)) % thisVal;
						if ((temp.data[maxLength - 1] & 0x80000000) != 0)
							temp += thisVal;

						if (lucas[2] != temp)
							isPrime = false;
					}
				}

				return isPrime;
			}
		}