//***********************************************************************
		// Generates a random number with the specified number of bits such
		// that gcd(number, this) = 1
		//***********************************************************************

		/// <summary>
		/// Generates a random number with the specified number of bits such
		/// that gcd(number, this) = 1
		/// </summary>
		/// <param name="bits">The bits.</param>
		/// <param name="rand">The rand.</param>
		/// <returns></returns>
		public BigInteger GenerateCoprime(int bits, Random rand)
		{
			unchecked
			{
				bool done = false;
				BigInteger result = new BigInteger();

				while (!done)
				{
					result.GenerateRandomBits(bits, rand);
					//Console.WriteLine(result.ToString(16));

					// gcd test
					BigInteger g = result.Gcd(this);
					if (g.dataLength == 1 && g.data[0] == 1)
						done = true;
				}

				return result;
			}
		}
		private static bool LucasStrongTestHelper(BigInteger thisVal)
		{
			unchecked
			{
				// Do the test (selects D based on Selfridge)
				// Let D be the first element of the sequence
				// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
				// Let P = 1, Q = (1-D) / 4

				long D = 5, sign = -1, dCount = 0;
				bool done = false;

				while (!done)
				{
					int Jresult = Jacobi(D, thisVal);

					if (Jresult == -1)
						done = true; // J(D, this) = 1
					else
					{
						if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found
							return false;

						if (dCount == 20)
						{
							// check for square
							BigInteger root = thisVal.Sqrt();
							if (root * root == thisVal)
								return false;
						}

						//Console.WriteLine(D);
						D = (Math.Abs(D) + 2) * sign;
						sign = -sign;
					}
					dCount++;
				}

				long Q = (1 - D) >> 2;

				/*
						Console.WriteLine("D = " + D);
						Console.WriteLine("Q = " + Q);
						Console.WriteLine("(n,D) = " + thisVal.gcd(D));
						Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
						Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
						*/

				BigInteger p_add1 = thisVal + 1;
				int s = 0;

				for (int index = 0; index < p_add1.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((p_add1.data[index] & mask) != 0)
						{
							index = p_add1.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						s++;
					}
				}

				BigInteger t = p_add1 >> s;

				// calculate constant = b^(2k) / m
				// for Barrett Reduction
				BigInteger constant = new BigInteger();

				int nLen = thisVal.dataLength << 1;
				constant.data[nLen] = 0x00000001;
				constant.dataLength = nLen + 1;

				constant = constant / thisVal;

				BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
				bool isPrime = false;

				if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
					(lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
				{
					// u(t) = 0 or V(t) = 0
					isPrime = true;
				}

				for (int i = 1; i < s; i++)
				{
					if (!isPrime)
					{
						// doubling of index
						lucas[1] = BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
						lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

						//lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

						if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
							isPrime = true;
					}

					lucas[2] = BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k
				}

				if (isPrime) // additional checks for composite numbers
				{
					// If n is prime and gcd(n, Q) == 1, then
					// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

					BigInteger g = thisVal.Gcd(Q);
					if (g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1
					{
						if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
							lucas[2] += thisVal;

						BigInteger temp = (Q * Jacobi(Q, thisVal)) % thisVal;
						if ((temp.data[maxLength - 1] & 0x80000000) != 0)
							temp += thisVal;

						if (lucas[2] != temp)
							isPrime = false;
					}
				}

				return isPrime;
			}
		}
		//***********************************************************************
		// Probabilistic prime test based on Rabin-Miller's
		//
		// for any p > 0 with p - 1 = 2^s * t
		//
		// p is probably prime (strong pseudoprime) if for any a < p,
		// 1) a^t mod p = 1 or
		// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a strong pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Rabin-Miller's
		///
		/// for any p &gt; 0 with p - 1 = 2^s * t
		///
		/// p is probably prime (strong pseudoprime) if for any a &lt; p,
		/// 1) a^t mod p = 1 or
		/// 2) a^((2^j)*t) mod p = p-1 for some 0 &lt;= j &lt;= s-1
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a strong pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool RabinMillerTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				// calculate values of s and t
				BigInteger p_sub1 = thisVal - (new BigInteger(1));
				int s = 0;

				for (int index = 0; index < p_sub1.dataLength; index++)
				{
					uint mask = 0x01;

					for (int i = 0; i < 32; i++)
					{
						if ((p_sub1.data[index] & mask) != 0)
						{
							index = p_sub1.dataLength; // to break the outer loop
							break;
						}
						mask <<= 1;
						s++;
					}
				}

				BigInteger t = p_sub1 >> s;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					BigInteger b = a.ModPow(t, thisVal);

					/*
								Console.WriteLine("a = " + a.ToString(10));
								Console.WriteLine("b = " + b.ToString(10));
								Console.WriteLine("t = " + t.ToString(10));
								Console.WriteLine("s = " + s);
								*/

					bool result = false;

					if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
						result = true;

					for (int j = 0; result == false && j < s; j++)
					{
						if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
						{
							result = true;
							break;
						}

						b = (b * b) % thisVal;
					}

					if (result == false)
						return false;
				}
				return true;
			}
		}
		//***********************************************************************
		// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		//
		// p is probably prime if for any a < p (a is not multiple of p),
		// a^((p-1)/2) mod p = J(a, p)
		//
		// where J is the Jacobi symbol.
		//
		// Otherwise, p is composite.
		//
		// Returns
		// -------
		// True if "this" is a Euler pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
		///
		/// p is probably prime if for any a &lt; p (a is not multiple of p),
		/// a^((p-1)/2) mod p = J(a, p)
		///
		/// where J is the Jacobi symbol.
		///
		/// Otherwise, p is composite.
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a Euler pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool SolovayStrassenTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				BigInteger p_sub1 = thisVal - 1;
				BigInteger p_sub1_shift = p_sub1 >> 1;

				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					// calculate a^((p-1)/2) mod p

					BigInteger expResult = a.ModPow(p_sub1_shift, thisVal);
					if (expResult == p_sub1)
						expResult = -1;

					// calculate Jacobi symbol
					BigInteger jacob = Jacobi(a, thisVal);

					//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
					//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

					// if they are different then it is not prime
					if (expResult != jacob)
						return false;
				}

				return true;
			}
		}
		//***********************************************************************
		// Probabilistic prime test based on Fermat's little theorem
		//
		// for any a < p (p does not divide a) if
		//      a^(p-1) mod p != 1 then p is not prime.
		//
		// Otherwise, p is probably prime (pseudoprime to the chosen base).
		//
		// Returns
		// -------
		// True if "this" is a pseudoprime to randomly chosen
		// bases.  The number of chosen bases is given by the "confidence"
		// parameter.
		//
		// False if "this" is definitely NOT prime.
		//
		// Note - this method is fast but fails for Carmichael numbers except
		// when the randomly chosen base is a factor of the number.
		//
		//***********************************************************************

		/// <summary>
		/// Probabilistic prime test based on Fermat's little theorem
		///
		/// for any a &lt; p (p does not divide a) if
		///      a^(p-1) mod p != 1 then p is not prime.
		///
		/// Otherwise, p is probably prime (pseudoprime to the chosen base).
		/// </summary>
		/// <param name="confidence">The confidence.</param>
		/// <returns>
		/// True if "this" is a pseudoprime to randomly chosen
		/// bases.  The number of chosen bases is given by the "confidence"
		/// parameter.
		///
		/// False if "this" is definitely NOT prime.
		/// </returns>
		public bool FermatLittleTest(int confidence)
		{
			unchecked
			{
				BigInteger thisVal;
				if ((data[maxLength - 1] & 0x80000000) != 0) // negative
					thisVal = -this;
				else
					thisVal = this;

				if (thisVal.dataLength == 1)
				{
					// test small numbers
					if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
						return false;
					else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
						return true;
				}

				if ((thisVal.data[0] & 0x1) == 0) // even numbers
					return false;

				int bits = thisVal.BitCount();
				BigInteger a = new BigInteger();
				BigInteger p_sub1 = thisVal - (new BigInteger(1));
				Random rand = new Random();

				for (int round = 0; round < confidence; round++)
				{
					bool done = false;

					while (!done) // generate a < n
					{
						int testBits = 0;

						// make sure "a" has at least 2 bits
						while (testBits < 2)
							testBits = (int)(rand.NextDouble() * bits);

						a.GenerateRandomBits(testBits, rand);

						int byteLen = a.dataLength;

						// make sure "a" is not 0
						if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
							done = true;
					}

					// check whether a factor exists (fix for version 1.03)
					BigInteger gcdTest = a.Gcd(thisVal);
					if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
						return false;

					// calculate a^(p-1) mod p
					BigInteger expResult = a.ModPow(p_sub1, thisVal);

					int resultLen = expResult.dataLength;

					// is NOT prime is a^(p-1) mod p != 1

					if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
					{
						//Console.WriteLine("a = " + a.ToString());
						return false;
					}
				}

				return true;
			}
		}