public virtual void EvaluatePopulation(Population pop, EvolutionAlgorithm ea)
        {
            // Evaluate in single-file each genome within the population.
            // Only evaluate new genomes (those with EvaluationCount==0).
            int count = pop.GenomeList.Count;
            for(int i=0; i<count; i++)
            {
                IGenome g = pop.GenomeList[i];
                if(g.EvaluationCount!=0)
                    continue;

                INetwork network = g.Decode(activationFn);
                if(network==null)
                {	// Future genomes may not decode - handle the possibility.
                    g.Fitness = EvolutionAlgorithm.MIN_GENOME_FITNESS;
                }
                else
                {
                    g.Fitness = Math.Max(networkEvaluator.EvaluateNetwork(network), EvolutionAlgorithm.MIN_GENOME_FITNESS);
                }

                // Reset these genome level statistics.
                g.TotalFitness = g.Fitness;
                g.EvaluationCount = 1;

                // Update master evaluation counter.
                evaluationCount++;
            }
        }
		/// <summary>
		/// Default Constructor.
		/// </summary>
		public EvolutionAlgorithm(Population pop, IPopulationEvaluator populationEvaluator, NeatParameters neatParameters)
		{
			this.pop = pop;
			this.populationEvaluator = populationEvaluator;
			this.neatParameters = neatParameters;
			neatParameters_Normal = neatParameters;

			neatParameters_PrunePhase = new NeatParameters(neatParameters);
			neatParameters_PrunePhase.pMutateAddConnection = 0.0;
            neatParameters_PrunePhase.pMutateAddNode = 0.0;
            neatParameters_PrunePhase.pMutateAddModule = 0.0;
            neatParameters_PrunePhase.pMutateConnectionWeights = 0.33;
			neatParameters_PrunePhase.pMutateDeleteConnection = 0.33;
			neatParameters_PrunePhase.pMutateDeleteSimpleNeuron = 0.33;

			// Disable all crossover as this has a tendency to increase complexity, which is precisely what
			// we don't want during a pruning phase.
			neatParameters_PrunePhase.pOffspringAsexual = 1.0;
			neatParameters_PrunePhase.pOffspringSexual = 0.0;
			
			if(neatParameters.multiobjective) {
				this.multiobjective=new Multiobjective.Multiobjective(neatParameters);
				neatParameters.compatibilityThreshold=100000000.0; //disable speciation w/ multiobjective
			}
			
            if(neatParameters.noveltySearch)
            {
                if(neatParameters.noveltyHistogram)
                {
                    this.noveltyFixed = new noveltyfixed(neatParameters.archiveThreshold);
                    this.histogram = new noveltyhistogram(neatParameters.histogramBins);
					noveltyInitialized=true;
                    InitialisePopulation();
                }
                
                if(neatParameters.noveltyFixed || neatParameters.noveltyFloat)
                {
                    this.noveltyFixed = new noveltyfixed(neatParameters.archiveThreshold);
                    InitialisePopulation();
                    noveltyFixed.initialize(this.pop);
					noveltyInitialized=true;
			        populationEvaluator.EvaluatePopulation(pop, this);			
			        UpdateFitnessStats();
			        DetermineSpeciesTargetSize();
                }
               
            }
            else
            {
			InitialisePopulation();
			}
		}
        // Initialize the variables pertaining to the grid bins (min, max, range, bin size, num bins..)
        // MAPELITES TODO: Define this in a better way. For now it is hardcoded.
        //      - a better way: specify in the behavior characterization what the bounds are for each dimension
        public void meGridInit(Population pop)
        {
            meNumDimensions = pop.GenomeList[0].Behavior.behaviorList.Count; // see how many dimensions we are working with.


            // HARDCODED - IMPORTANT: CHANGE THIS TO FIT THE DOMAIN. DO NOT USE TOO MANY BINS FOR THE DIMENSIONALITY!
            int HC_NUMBINS = 36;
            double HC_DEFAULTMIN = 0;
            double HC_DEFAULTMAX = 1;
            int HC_HOWMANYISTOOMANYBINS = 2000;
            int HC_HOWMANYISTOOMANYDIMENSIONS = 14;

            if (meNumDimensions >= HC_HOWMANYISTOOMANYDIMENSIONS)
            {
                Console.WriteLine("[!] Behavior characterization has TOO MANY VALUES for use with MapElites grid! (" + meNumDimensions + " vals, max " + HC_HOWMANYISTOOMANYDIMENSIONS + ")");
                throw new Exception("[!] Behavior characterization has TOO MANY VALUES for use with MapElites grid! (" + meNumDimensions + " vals, max " + HC_HOWMANYISTOOMANYDIMENSIONS + ")");
            }

            double totalNumberOfBins = Math.Pow(HC_NUMBINS, meNumDimensions);
            while (totalNumberOfBins > HC_HOWMANYISTOOMANYBINS)
            {
                if (HC_NUMBINS <= 1)
                {
                    Console.WriteLine("[!] Cannot resolve MapElites bins (this should never happen). Try using a BC with fewer values.");
                    throw new Exception("[!] Cannot resolve MapElites bins (this should never happen). Try using a BC with fewer values.");
                }

                // Decrement the number of bins per dimension and then recalculate the total.
                HC_NUMBINS--;
                totalNumberOfBins = Math.Pow(HC_NUMBINS, meNumDimensions);
                Console.WriteLine("[!] Too many bins per dimension for this BC, trying fewer bins: " + HC_NUMBINS + " per dimension");
            }

            meNumBins = HC_NUMBINS;
            meMin = new List<double>();
            meMax = new List<double>();
            meRange = new List<double>();
            meBinSize = new List<double>(); // meBinSize = meRange / meNumBins

            for (int i = 0; i < meNumDimensions; i++)
            {
                meMin.Add(HC_DEFAULTMIN);
                meMax.Add(HC_DEFAULTMAX);
                meRange.Add(HC_DEFAULTMAX - HC_DEFAULTMIN);
                meBinSize.Add((meRange[i])/meNumBins);
            }
        }
        public void EvaluatePopulation(Population pop, EvolutionAlgorithm ea)
        {
            int count = pop.GenomeList.Count;
            evalPack e;
            IGenome g;
            int i;

            for (i = 0; i < count; i++)
            {
                //Console.WriteLine(i);
                sem.WaitOne();
                g = pop.GenomeList[i];
                e = new evalPack(networkEvaluator, activationFn, g, i % HyperNEATParameters.numThreads,(int)ea.Generation);
                ThreadPool.QueueUserWorkItem(new WaitCallback(evalNet), e);
                // Update master evaluation counter.
                evaluationCount++;

                /*if(printFinalPositions)
                    file.WriteLine(g.Behavior.behaviorList[0].ToString() + ", " + g.Behavior.behaviorList[1].ToString());//*/
            }
            //Console.WriteLine("waiting for last threads..");
           for (int j = 0; j < HyperNEATParameters.numThreads; j++)
            {
           		sem.WaitOne();
              //  Console.WriteLine("waiting");
			}
            for (int j = 0; j < HyperNEATParameters.numThreads; j++)
            {
				//Console.WriteLine("releasing");
       
                sem.Release();
            }
            //Console.WriteLine("generation done...");
            //calulate novelty scores...
            if(ea.NeatParameters.noveltySearch)
            {
                if(ea.NeatParameters.noveltySearch)
                {
                    ea.CalculateNovelty();
                }
            }

        }
示例#5
0
        //add an existing population from hypersharpNEAT to the multiobjective population maintained in
        //this class, step taken before evaluating multiobjective population through the rank function
        public void addPopulation(Population p)
        {
            EvolutionManager em = EvolutionManager.SharedEvolutionManager;

            for(int i=0;i<p.GenomeList.Count;i++)
            {
                bool blacklist=false;
                for(int j=0;j<population.Count;j++)
                {
                 if(distance(p.GenomeList[i].Behavior.objectives,population[j].objectives) < 0.01)
                        blacklist=true;  //reject a genome if it is very similar to existing genomes in pop
                }
                if(!blacklist) { //add genome if it is unique
                //we might not need to make copies
                    NeatGenome.NeatGenome copy = (NeatGenome.NeatGenome)em.getGenomeFromID(p.GenomeList[i].GenomeId); //new NeatGenome.NeatGenome((NeatGenome.NeatGenome)p.GenomeList[i], p.GenomeList[i].GenomeId);
                copy.objectives = (double[])p.GenomeList[i].Behavior.objectives.Clone();
                population.Add(copy);
                }

            }
        }
		public virtual void EvaluatePopulation(Population pop, EvolutionAlgorithm ea)
		{
			// Evaluate in single-file each genome within the population. 
			// Only evaluate new genomes (those with EvaluationCount==0).
			int count = pop.GenomeList.Count;
			for(int i=0; i<count; i++)
			{
				IGenome g = pop.GenomeList[i];
				if(g.EvaluationCount!=0)
					continue;

				INetwork network = g.Decode(activationFn);
				if(network==null)
				{	// Future genomes may not decode - handle the possibility.
					g.Fitness = EvolutionAlgorithm.MIN_GENOME_FITNESS;
				}
				else
				{
				    BehaviorType behavior;
					g.Fitness = Math.Max(networkEvaluator.EvaluateNetwork(network,out behavior), EvolutionAlgorithm.MIN_GENOME_FITNESS);                    
                    g.RealFitness = g.Fitness;
		            g.Behavior = behavior;
		        }

				// Reset these genome level statistics.
				g.TotalFitness = g.Fitness;
				g.EvaluationCount = 1;

				// Update master evaluation counter.
				evaluationCount++;
			}
			
			if(ea.NeatParameters.noveltySearch)
            {
                if(ea.NeatParameters.noveltySearch && ea.noveltyInitialized)
                {
                    ea.CalculateNovelty();
                }
            }
		}
//		private IGenome EvenDistributionSelect(Species species)
//		{
//			return species.Members[Utilities.Next(species.SelectionCount)];
//		}

		private IGenome TournamentSelect(Population p) {
			double bestFound= 0.0;
			IGenome bestGenome=null;
			int bound = p.GenomeList.Count;
			for(int i=0;i<neatParameters.tournamentSize;i++) {
				IGenome next= p.GenomeList[Utilities.Next(bound)];
				if (next.Fitness > bestFound) {
					bestFound=next.Fitness;
					bestGenome=next;
				}
			}
			return bestGenome;
		}
		/// <summary>
		/// Default Constructor.
		/// </summary>
		public EvolutionAlgorithm(Population pop, IPopulationEvaluator populationEvaluator) : this(pop, populationEvaluator, new NeatParameters())
		{}
示例#9
0
		public static GenomeList CreateGenomeList(Population seedPopulation, int length, NeatParameters neatParameters, IdGenerator idGenerator)
		{
			//Build the list.
			GenomeList genomeList = new GenomeList();
			int seedIdx=0;
			
			for(int i=0; i<length; i++)
			{
				NeatGenome newGenome = new NeatGenome((NeatGenome)seedPopulation.GenomeList[seedIdx], idGenerator.NextGenomeId);

				// Reset the connection weights
				foreach(ConnectionGene connectionGene in newGenome.ConnectionGeneList)
					connectionGene.Weight = (Utilities.NextDouble() * neatParameters.connectionWeightRange) - neatParameters.connectionWeightRange/2.0;

				genomeList.Add(newGenome);

				if(++seedIdx >= seedPopulation.GenomeList.Count)
				{	// Back to first genome.
					seedIdx=0;
				}
			}
			return genomeList;
		}
示例#10
0
 public void initalizeEvolution(Population pop)
 {
     if (logOutput != null)
         logOutput.Close();
     logOutput = new StreamWriter(outputFolder + "logfile.txt");
     //IdGenerator idgen = new IdGeneratorFactory().CreateIdGenerator(pop.GenomeList);
     ea = new EvolutionAlgorithm(pop, populationEval, neatParams);
 }
示例#11
0
        //not entirely concerned with this yet.
        public void EvaluatePopulation(Population pop, EvolutionAlgorithm ea)
        {
            List<long> genomeIDs = pop.GenomeList.Select(x => (long)x.GenomeId).ToList();

            //mostly for memory cleanup stuff -- don't really need to do this
            if(genomeBehaviors!=null)
                genomeBehaviors.Clear();

            if (fitnessDictionary != null)
                fitnessDictionary.Clear();

            Dictionary<long, KeyValuePair<double[], List<double>>> genomeBs = new Dictionary<long,KeyValuePair<double[],List<double>>>();

            fitnessDictionary = new Dictionary<long, double>();
            genomeSecondaryBehaviors = new Dictionary<long, List<double>>();

            //break our communication up into 5 almost equal chunks (maybe a better number to select here)
               var genomesChunks = genomeIDs.GroupBy(x => genomeIDs.IndexOf(x) % 7);

            foreach(var chunk in genomesChunks)
            {
                var genomes = serialCallCommunicatorWithIDs(chunk.ToList());
                foreach (var gReturn in genomes)
                {
                    genomeBs.Add(gReturn.Key, gReturn.Value);
                }
            }

            while (genomeBs.Count == 0)
            {
                //send them back, we want the right ones no matter what!
                genomeBs = serialCallCommunicatorWithIDs(genomeIDs);
            }

            try
            {
                int objCount = 3;
                //assign genome behaviors to population objects!
                foreach (IGenome genome in pop.GenomeList)
                {
                    //calculate our progress in obj

                    double[] accumObjectives = new double[objCount];
                    for (int i = 0; i < objCount; i++) accumObjectives[i] = 0.0;

                    //our real fitness is measured by distance traveled
                    genome.RealFitness = fitnessDictionary[genome.GenomeId];
                    genome.Fitness = EvolutionAlgorithm.MIN_GENOME_FITNESS;

                    //set the behavior yo!
                    //objectives should be [ fitness, 0, 0 ] -- to be updated with novelty stuff
                    genome.Behavior = new SharpNeatLib.BehaviorType() { objectives = genomeBs[genome.GenomeId].Key, behaviorList = genomeBs[genome.GenomeId].Value };

                    if (genomeSecondaryBehaviors.Count > 0)
                        genome.SecondBehavior = new SharpNeatLib.BehaviorType() { objectives = genomeBs[genome.GenomeId].Key, behaviorList = genomeSecondaryBehaviors[genome.GenomeId] };
                }

                //if (ea.NeatParameters.noveltySearch)
                //{
                //    if (ea.NeatParameters.noveltySearch && ea.noveltyInitialized)
                //    {
                //        ea.CalculateNovelty();
                //    }
                //}

            }
            catch (Exception e)
            {
                //check our last object
                var parsedJson = JObject.Parse((string)lastReturnedObject.Args[0]);
                //Console.WriteLine(parsedJson);
                Console.WriteLine("Error: " + e.Message);
                Console.WriteLine(e.StackTrace);

                throw e;

            }
        }
		//add an existing population from hypersharpNEAT to the multiobjective population maintained in
		//this class, step taken before evaluating multiobjective population through the rank function
		public void addPopulation(Population p) {
			for(int i=0;i<p.GenomeList.Count;i++)
		    {
		        bool blacklist=false;
				for(int j=0;j<population.Count;j++)
				{
                    if (distance(p.GenomeList[i].objectives, population[j].objectives) < 0.0001)
                    {//JUSTIN: Changed from 0.001 (doesn't seem to help)
                        blacklist = true;  //reject a genome if it is very similar to existing genomes in pop
                        //Console.Write("Blacklisting: ");
                        //foreach (double bla in p.GenomeList[i].objectives) Console.Write(bla + " ");
                        //Console.Write("vs ");
                        //foreach (double bla in population[j].objectives) Console.Write(bla + " ");
                        //Console.WriteLine();
                        break;
                    }
				}
				if(!blacklist) { //add genome if it is unique
				    //we might not need to make copies
				    NeatGenome.NeatGenome copy=new NeatGenome.NeatGenome((NeatGenome.NeatGenome)p.GenomeList[i],0);
				    //copy.objectives = (double[])p.GenomeList[i].objectives.Clone(); //JUSTIN: Moved this to the NeatGenome copy constructor...
				    population.Add(copy);    
				}	
				
			}
		}
        /// <summary>
        /// Default Constructor.
        /// </summary>
        public EvolutionAlgorithm(Population pop, IPopulationEvaluator populationEvaluator, NeatParameters neatParameters)
        {
            this.pop = pop;
            this.populationEvaluator = populationEvaluator;
            this.neatParameters = neatParameters;
            neatParameters_Normal = neatParameters;

            neatParameters_PrunePhase = new NeatParameters(neatParameters);
            neatParameters_PrunePhase.pMutateAddConnection = 0.0;
            neatParameters_PrunePhase.pMutateAddNode = 0.0;
            neatParameters_PrunePhase.pMutateConnectionWeights = 0.33;
            neatParameters_PrunePhase.pMutateDeleteConnection = 0.33;
            neatParameters_PrunePhase.pMutateDeleteSimpleNeuron = 0.33;

            // Disable all crossover as this has a tendency to increase complexity, which is precisely what
            // we don't want during a pruning phase.
            neatParameters_PrunePhase.pOffspringAsexual = 1.0;
            neatParameters_PrunePhase.pOffspringSexual = 0.0;

            InitialisePopulation();
        }
		/// <summary>
		/// Default Constructor.
		/// </summary>
		public EvolutionAlgorithm(Population pop, IPopulationEvaluator populationEvaluator, NeatParameters neatParameters)
		{
			this.pop = pop;
			this.populationEvaluator = populationEvaluator;
			this.neatParameters = neatParameters;
			neatParameters_Normal = neatParameters;

			neatParameters_PrunePhase = new NeatParameters(neatParameters);
			neatParameters_PrunePhase.pMutateAddConnection = 0.0;
            neatParameters_PrunePhase.pMutateAddNode = 0.0;
            neatParameters_PrunePhase.pMutateAddModule = 0.0;
            neatParameters_PrunePhase.pMutateConnectionWeights = 0.33;
			neatParameters_PrunePhase.pMutateDeleteConnection = 0.33;
			neatParameters_PrunePhase.pMutateDeleteSimpleNeuron = 0.33;

			// Disable all crossover as this has a tendency to increase complexity, which is precisely what
			// we don't want during a pruning phase.
			neatParameters_PrunePhase.pOffspringAsexual = 1.0;
			neatParameters_PrunePhase.pOffspringSexual = 0.0;

            if (neatParameters.mapelites)
            {
                meInitialisePopulation();
                meGridInit(pop);
                Console.WriteLine("Mapelites stuff has been initialized. Oh btw, we're doing mapelites.");
                if (neatParameters.me_simpleGeneticDiversity)
                {
                    Console.WriteLine("Mapelites reinforced by the power of 51MPLE gENET1C d1VER51TY!!!!1  *fireworks* *applause* *receive phd*");
                }
                if (neatParameters.me_noveltyPressure)
                {
                    Console.WriteLine("Mapelites now with NOVELTY PRESSURE! (>'')>");
                }
            } // Skip all that other stupid shit if we are doing MapElites
            else if (neatParameters.NS2)
            {
                if (neatParameters.NS1) ns1 = true;

                ns2InitializePopulation();
                if (neatParameters.track_me_grid)
                {
                    Console.WriteLine("Initializing mapelites-style-grid genome tracking..");
                    meGridInit(pop);
                }
                Console.WriteLine("Novelty Search 2.0 has been initialized.");
            } // Skip the code jungle below if we are doing Novelty Search 2.0
            else if (neatParameters.NSLC) // (Steady-State NSLC -- NEW!!)
            {
                // TODO: JUSTIN: SS-NSLC GOES HERE!
                ns1 = true;
                ns2InitializePopulation();
                if (neatParameters.track_me_grid)
                {
                    Console.WriteLine("Initializing mapelites-style-grid genome tracking..");
                    meGridInit(pop);
                }
                Console.WriteLine("Initializing STEADY STATE -- NSLC! NEW! This is a thing that is happening now. You cannot stop it. Relax.");
                // TODO: INITIALIZATION for SS-NSLC (is like NS1... but make it separate so we can stop being so intertwined. cleaner is better, yo)


            } // Skip the nasty quagmire of unverified bogus rotten banana sandwiches if doing Steady-State NSLC
            else
            {
                if (neatParameters.multiobjective)
                {
                    this.multiobjective = new Multiobjective.Multiobjective(neatParameters);
                    neatParameters.compatibilityThreshold = 100000000.0; //disable speciation w/ multiobjective
                }

                if (neatParameters.noveltySearch)
                {
                    if (neatParameters.noveltyHistogram)
                    {
                        this.noveltyFixed = new noveltyfixed(neatParameters.archiveThreshold);
                        this.histogram = new noveltyhistogram(neatParameters.histogramBins);
                        noveltyInitialized = true;
                        InitialisePopulation();
                    }

                    if (neatParameters.noveltyFixed || neatParameters.noveltyFloat)
                    {
                        this.noveltyFixed = new noveltyfixed(neatParameters.archiveThreshold);
                        InitialisePopulation();
                        noveltyFixed.initialize(this.pop);
                        noveltyInitialized = true;
                        populationEvaluator.EvaluatePopulation(pop, this);
                        UpdateFitnessStats();
                        DetermineSpeciesTargetSize();
                    }

                    if (neatParameters.track_me_grid)
                    {
                        Console.WriteLine("Initializing mapelites-style-grid genome tracking..");
                        meGridInit(pop); // JUSTIN: Trying to add grid-tracking to NS1
                    }

                }
                else
                {
                    InitialisePopulation();

                    if (neatParameters.track_me_grid)
                    {
                        Console.WriteLine("Initializing mapelites-style-grid genome tracking..");
                        meGridInit(pop); // JUSTIN: Trying to add grid-tracking to fitness-based search
                    }
                }
            }
		}
        public void EvaluatePopulation(Population pop, EvolutionAlgorithm ea)
        {
            var count = pop.GenomeList.Count;

            #region Reset the genomes

            for (var i = 0; i < count; i++)
            {
                pop.GenomeList[i].TotalFitness = EvolutionAlgorithm.MIN_GENOME_FITNESS;
                pop.GenomeList[i].EvaluationCount = 0;
                pop.GenomeList[i].Fitness = EvolutionAlgorithm.MIN_GENOME_FITNESS;
            }

            #endregion

            //TODO: Parallelize/Distribute this loop
            //Ideally we should have a distributed method which returns an array of
            //doubles to add to the genome fitnesses of each individual.
            for (var i = 0; i < count; i++)
            {
                Console.WriteLine("Individual #{0}", i + 1);
                var g = pop.GenomeList[i];

                var network = g.Decode(ActivationFunction);
                if (network == null)
                {
                    // Future genomes may not decode - handle the possibility.
                    g.Fitness = EvolutionAlgorithm.MIN_GENOME_FITNESS;
                    g.TotalFitness = g.Fitness;
                    g.EvaluationCount = 1;
                    continue;
                }

                HandEngine engine = new HandEngine();
                //Run multiple hands per individual
                for (var curGame = 0; curGame < GamesPerEvaluation; curGame++)
                {
                    #region Setup the players for this game

                    var field = new List<Seat>();
                    var stacks = GetStacks(PlayersPerGame);
                    var networks = new int[PlayersPerGame];
                    networks[0] = i;
                    IPlayer hero = null;//new NeuralNetworkPlayer(InputGenerator, OutputInterpreter,
                                   //                        network, Rand);
                    field.Add(new Seat(1, "Net_" + i, stacks[0], hero));

                    for (var curPlayer = 1; curPlayer < PlayersPerGame; curPlayer++)
                    {
                        INetwork nextNetwork = null;
                        var next = 0;
                        while (nextNetwork == null)
                        {
                            next = Rand.Next(0, count);
                            nextNetwork = pop.GenomeList[next].Decode(ActivationFunction);
                        }
                        networks[curPlayer] = next;
                        //"NeuralNet" + next, stacks[curPlayer],
                        IPlayer villain = null;// new NeuralNetworkPlayer(InputGenerator,
                                                 //          OutputInterpreter, nextNetwork, Rand);
                        field.Add(new Seat(curPlayer + 1, "Net" + next + "_Seat+ " + (curPlayer+1), stacks[curPlayer], villain));
                    }

                    #endregion

                    //Have the players play a single hand.
                    HandHistory history = new HandHistory(field.ToArray(), (ulong)curGame+1, (uint)(curGame % PlayersPerGame + 1),
                                                            new double[] { 1, 2 }, 0, BettingType);
                    CachedHand hand = CachedHands[Rand.Next(CachedHands.Count)];
                    engine.PlayHand(history);

                    #region Add the results to the players' fitness scores

                    //We'll use the profit as the fitness function.
                    //Alternatively, we could in the future experiment with using profit
                    //as a percentage of the original stacks. Or we could use the square
                    //of the profit (multiplying by -1 if the player lost money).
                    for (var curResult = 0; curResult < PlayersPerGame; curResult++)
                    {
                        var curGenome = pop.GenomeList[networks[curResult]];
                        curGenome.TotalFitness += field[curResult].Chips - stacks[curResult];
                        curGenome.EvaluationCount++;
                    }

                    #endregion

                    if (GamesPlayed % 10000 == 0)
                        using (TextWriter writer = new StreamWriter("game_" + GamesPlayed + ".txt"))
                            writer.WriteLine(history.ToString());

                    //increment the game counter
                    GamesPlayed++;
                }

            }

            //Normalize the fitness scores to use the win-rate
            for (var i = 0; i < count; i++)
            {
                pop.GenomeList[i].Fitness = Math.Max(pop.GenomeList[i].Fitness,
                                                     EvolutionAlgorithm.MIN_GENOME_FITNESS);
                pop.GenomeList[i].TotalFitness = Math.Max(pop.GenomeList[i].Fitness,
                                                     EvolutionAlgorithm.MIN_GENOME_FITNESS);
            }
        }
		/// <summary>
		/// Biased select.
		/// </summary>
		/// <param name="species">Species to select from.</param>
		/// <returns></returns>
		private IGenome RouletteWheelSelect(Population p)
		{
			double selectValue = (Utilities.NextDouble() * p.SelectionTotalFitness);
			double accumulator=0.0;

			int genomeBound = p.GenomeList.Count;
			for(int genomeIdx=0; genomeIdx<genomeBound;genomeIdx++)
			{
				IGenome genome = p.GenomeList[genomeIdx];

				accumulator += genome.Fitness;
				if(selectValue <= accumulator)
					return genome;
			}
			// Should never reach here.
			return null;
		}
 public void initalizeEvolution(Population pop)
 {
     logOutput = new StreamWriter(outputFolder + "logfile.txt");
     //IdGenerator idgen = new IdGeneratorFactory().CreateIdGenerator(pop.GenomeList);
     ea = new EvolutionAlgorithm(pop, experiment.PopulationEvaluator, experiment.DefaultNeatParameters);
 }
        public void EvaluatePopulation(Population pop, EvolutionAlgorithm ea)
        {
            int count = pop.GenomeList.Count;

            evalPack e;
            IGenome g;
            int i;

            for (i = 0; i < count; i++)
            {

                sem.WaitOne();
                g = pop.GenomeList[i];
                e = new evalPack(networkEvaluator, activationFn, g);

                ThreadPool.QueueUserWorkItem(new WaitCallback(evalNet), e);
                // Update master evaluation counter.
                evaluationCount++;

            }

            for (int j = 0; j < HyperNEATParameters.numThreads; j++)
            {
                sem.WaitOne();
            }
            for (int j = 0; j < HyperNEATParameters.numThreads; j++)
            {
                sem.Release();
            }
        }
        /// <summary>
        /// Initializes the EA using an initial population that has already been read into object format.
        /// </summary>
        /// <param name="pop"></param>
        public void initalizeEvolution(Population pop)
        {
            LogOutput = Logging ? new StreamWriter(Path.Combine(OutputFolder, "log.txt")) : null;
            FinalPositionOutput = FinalPositionLogging ? new StreamWriter(Path.Combine(OutputFolder, "final-position.txt")) : null;
            ArchiveModificationOutput = FinalPositionLogging ? new StreamWriter(Path.Combine(OutputFolder, "archive-mods.txt")) : null;
            ComplexityOutput = new StreamWriter(Path.Combine(OutputFolder, "complexity.txt"));
            ComplexityOutput.WriteLine("avg,stdev,min,max");

            if (FinalPositionLogging)
            {
                FinalPositionOutput.WriteLine("ID,x,y");
                ArchiveModificationOutput.WriteLine("ID,action,time,x,y");
            }

            EA = new EvolutionAlgorithm(pop, experiment.PopulationEvaluator, experiment.DefaultNeatParameters);
            EA.outputFolder = OutputFolder;
            EA.neatBrain = NEATBrain;
        }
示例#20
0
        public EvolutionAlgorithm initializeEvolutionAlgorithm(IPopulationEvaluator popEval, int popSize, AssessGenotypeFunction assess, List<long> parentGenomeIDs = null)
        {
            //have to add our seed to the parents!
            if (officialSeedGenome != null)
            {
                //if we aren't given any parents, make a new list, and add the seed
                if (parentGenomeIDs == null)
                    parentGenomeIDs = new List<long>();

                parentGenomeIDs.Add(officialSeedGenome.GenomeId);
            }

            //create our initial population, using seeds or not, making sure it is at least "popsize" long
            GenomeList gl = createGenomeList(popSize, assess, parentGenomeIDs);

            //now we have a genomelist full of our parents, if they didn't die in a car crash when we were young, yay!
            //also, these parents, their connections, and neurons are safely catalogued by WIN (eventually...)
            Population pop = new Population(idgen, gl);

            //create our algorithm
            evoAlgorithm = new EvolutionAlgorithm(pop, popEval, neatParams, assess);

            createExperimentDirectory();

            //send it away!
            return evoAlgorithm;
        }