/*! Returns an approximation of the covariance defined as * \f$ \sigma(t_0, \mathbf{x}_0)^2 \Delta t \f$. */ public Matrix covariance(StochasticProcess process, double t0, Vector x0, double dt) { Matrix sigma = process.diffusion(t0, x0); Matrix result = sigma * Matrix.transpose(sigma) * dt; return(result); }
/*! Returns an approximation of the diffusion defined as \f$ \sigma(t_0, \mathbf{x}_0) \sqrt{\Delta t} \f$. */ public Matrix diffusion(StochasticProcess process, double t0, Vector x0, double dt) { return process.diffusion(t0, x0) * Math.Sqrt(dt); }
/*! Returns an approximation of the diffusion defined as * \f$ \sigma(t_0, \mathbf{x}_0) \sqrt{\Delta t} \f$. */ public Matrix diffusion(StochasticProcess process, double t0, Vector x0, double dt) { return(process.diffusion(t0, x0) * Math.Sqrt(dt)); }
/*! Returns an approximation of the covariance defined as \f$ \sigma(t_0, \mathbf{x}_0)^2 \Delta t \f$. */ public Matrix covariance(StochasticProcess process, double t0, Vector x0, double dt) { Matrix sigma = process.diffusion(t0, x0); Matrix result = sigma * Matrix.transpose(sigma) * dt; return result; }