/*! Returns an approximation of the covariance defined as
         *  \f$ \sigma(t_0, \mathbf{x}_0)^2 \Delta t \f$. */
        public Matrix covariance(StochasticProcess process, double t0, Vector x0, double dt)
        {
            Matrix sigma  = process.diffusion(t0, x0);
            Matrix result = sigma * Matrix.transpose(sigma) * dt;

            return(result);
        }
Ejemplo n.º 2
0
 /*! Returns an approximation of the diffusion defined as
     \f$ \sigma(t_0, \mathbf{x}_0) \sqrt{\Delta t} \f$. */
 public Matrix diffusion(StochasticProcess process, double t0, Vector x0, double dt)
 {
     return process.diffusion(t0, x0) * Math.Sqrt(dt);
 }
 /*! Returns an approximation of the diffusion defined as
  *  \f$ \sigma(t_0, \mathbf{x}_0) \sqrt{\Delta t} \f$. */
 public Matrix diffusion(StochasticProcess process, double t0, Vector x0, double dt)
 {
     return(process.diffusion(t0, x0) * Math.Sqrt(dt));
 }
Ejemplo n.º 4
0
 /*! Returns an approximation of the covariance defined as
     \f$ \sigma(t_0, \mathbf{x}_0)^2 \Delta t \f$. */
 public Matrix covariance(StochasticProcess process, double t0, Vector x0, double dt)
 {
     Matrix sigma = process.diffusion(t0, x0);
     Matrix result = sigma * Matrix.transpose(sigma) * dt;
     return result;
 }