//! Solve least square problem using numerix solver
        public Vector perform(ref LeastSquareProblem lsProblem)
        {
            double eps = accuracy_;

            // wrap the least square problem in an optimization function
            LeastSquareFunction lsf = new LeastSquareFunction(lsProblem);

            // define optimization problem
            Problem P = new Problem(lsf, c_, initialValue_);

            // minimize
            EndCriteria ec = new EndCriteria(maxIterations_, Math.Min(maxIterations_ / 2, 100), eps, eps, eps);

            exitFlag_ = (int)om_.minimize(P, ec);

            results_      = P.currentValue();
            resnorm_      = P.functionValue();
            bestAccuracy_ = P.functionValue();

            return(results_);
        }
            // curve optimization called here- adjust optimization parameters here
            internal void calculate()
            {
                FittingCost costFunction = costFunction_;
                Constraint  constraint   = new NoConstraint();

                // start with the guess solution, if it exists
                Vector x = new Vector(size(), 0.0);

                if (!curve_.guessSolution_.empty())
                {
                    x = curve_.guessSolution_;
                }

                if (curve_.maxEvaluations_ == 0)
                {
                    //Don't calculate, simply use given parameters to provide a fitted curve.
                    //This turns the fittedbonddiscountcurve into an evaluator of the parametric
                    //curve, for example allowing to use the parameters for a credit spread curve
                    //calculated with bonds in one currency to be coupled to a discount curve in
                    //another currency.
                    return;
                }

                //workaround for backwards compatibility
                OptimizationMethod optimization = optimizationMethod_;

                if (optimization == null)
                {
                    optimization = new Simplex(curve_.simplexLambda_);
                }

                Problem problem = new Problem(costFunction, constraint, x);

                double rootEpsilon         = curve_.accuracy_;
                double functionEpsilon     = curve_.accuracy_;
                double gradientNormEpsilon = curve_.accuracy_;

                EndCriteria endCriteria = new EndCriteria(curve_.maxEvaluations_,
                                                          curve_.maxStationaryStateIterations_,
                                                          rootEpsilon,
                                                          functionEpsilon,
                                                          gradientNormEpsilon);

                optimization.minimize(problem, endCriteria);
                solution_ = problem.currentValue();

                numberOfIterations_ = problem.functionEvaluation();
                costValue_          = problem.functionValue();

                // save the results as the guess solution, in case of recalculation
                curve_.guessSolution_ = solution_;
            }
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // Initializations
            double ftol = endCriteria.functionEpsilon();
            int    maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();

            EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria
            P.reset();                                       // reset problem
            Vector x_ = P.currentValue();                    // store the starting point
            int    iterationNumber_ = 0;

            // dimension line search
            lineSearch_.searchDirection = new Vector(x_.size());
            bool done = false;

            // function and squared norm of gradient values
            double fnew, fold, gold2;
            double fdiff;
            // classical initial value for line-search step
            double t = 1.0;
            // Set gradient g at the size of the optimization problem
            // search direction
            int    sz = lineSearch_.searchDirection.size();
            Vector prevGradient = new Vector(sz), d = new Vector(sz), sddiff = new Vector(sz), direction = new Vector(sz);

            // Initialize cost function, gradient prevGradient and search direction
            P.setFunctionValue(P.valueAndGradient(ref prevGradient, x_));
            P.setGradientNormValue(Vector.DotProduct(prevGradient, prevGradient));
            lineSearch_.searchDirection = prevGradient * -1;

            bool first_time = true;

            // Loop over iterations
            do
            {
                // Linesearch
                if (!first_time)
                {
                    prevGradient = lineSearch_.lastGradient();
                }
                t = (lineSearch_.value(P, ref ecType, endCriteria, t));
                // don't throw: it can fail just because maxIterations exceeded
                if (lineSearch_.succeed())
                {
                    // Updates

                    // New point
                    x_ = lineSearch_.lastX();
                    // New function value
                    fold = P.functionValue();
                    P.setFunctionValue(lineSearch_.lastFunctionValue());
                    // New gradient and search direction vectors

                    // orthogonalization coef
                    gold2 = P.gradientNormValue();
                    P.setGradientNormValue(lineSearch_.lastGradientNorm2());

                    // conjugate gradient search direction
                    direction = getUpdatedDirection(P, gold2, prevGradient);

                    sddiff = direction - lineSearch_.searchDirection;
                    lineSearch_.searchDirection = direction;
                    // Now compute accuracy and check end criteria
                    // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
                    fnew  = P.functionValue();
                    fdiff = 2.0 * Math.Abs(fnew - fold) /
                            (Math.Abs(fnew) + Math.Abs(fold) + Const.QL_EPSILON);

                    if (fdiff < ftol ||
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                    {
                        endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                        return(ecType);
                    }
                    P.setCurrentValue(x_); // update problem current value
                    ++iterationNumber_;    // Increase iteration number
                    first_time = false;
                }
                else
                {
                    done = true;
                }
            }while (!done);
            P.setCurrentValue(x_);
            return(ecType);
        }