示例#1
0
        protected void fillInitialPopulation(List <Candidate> population, Problem p)
        {
            // use initial values provided by the user
            population.First().values = p.currentValue().Clone();
            population.First().cost   = p.costFunction().value(population.First().values);

            if (Double.IsNaN(population.First().cost))
            {
                population.First().cost = Double.MaxValue;
            }

            // rest of the initial population is random
            for (int j = 1; j < population.Count; ++j)
            {
                for (int i = 0; i < p.currentValue().size(); ++i)
                {
                    double l = lowerBound_[i], u = upperBound_[i];
                    population[j].values[i] = l + (u - l) * rng_.nextReal();
                }

                population[j].cost = p.costFunction().value(population[j].values);

                if (Double.IsNaN(population[j].cost))
                {
                    population[j].cost = Double.MaxValue;
                }
            }
        }
示例#2
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            EndCriteria.Type ecType = EndCriteria.Type.None;

            upperBound_         = P.constraint().upperBound(P.currentValue());
            lowerBound_         = P.constraint().lowerBound(P.currentValue());
            currGenSizeWeights_ = new Vector(configuration().populationMembers,
                                             configuration().stepsizeWeight);
            currGenCrossover_ = new Vector(configuration().populationMembers,
                                           configuration().crossoverProbability);

            List <Candidate> population = new InitializedList <Candidate>(configuration().populationMembers);

            population.ForEach((ii, vv) => population[ii] = new Candidate(P.currentValue().size()));

            fillInitialPopulation(population, P);

            //original quantlib use partial_sort as only first elements is needed
            double fxOld = population.Min(x => x.cost);

            bestMemberEver_ = (Candidate)population.First(x => x.cost.IsEqual(fxOld)).Clone();
            int iteration = 0, stationaryPointIteration = 0;

            // main loop - calculate consecutive emerging populations
            while (!endCriteria.checkMaxIterations(iteration++, ref ecType))
            {
                calculateNextGeneration(population, P.costFunction());

                double    fxNew = population.Min(x => x.cost);
                Candidate tmp   = (Candidate)population.First(x => x.cost.IsEqual(fxNew)).Clone();

                if (fxNew < bestMemberEver_.cost)
                {
                    bestMemberEver_ = tmp;
                }

                if (endCriteria.checkStationaryFunctionValue(fxOld, fxNew, ref stationaryPointIteration,
                                                             ref ecType))
                {
                    break;
                }
                fxOld = fxNew;
            }

            P.setCurrentValue(bestMemberEver_.values);
            P.setFunctionValue(bestMemberEver_.cost);
            return(ecType);
        }
示例#3
0
        public Matrix jacFcn(int m, int n, Vector x, int iflag)
        {
            Vector xt = new Vector(x);
            Matrix fjac;

            // constraint handling needs some improvement in the future:
            // starting point should not be close to a constraint violation
            if (currentProblem_.constraint().test(xt))
            {
                Matrix tmp = new Matrix(m, n);
                currentProblem_.costFunction().jacobian(tmp, xt);
                Matrix tmpT = Matrix.transpose(tmp);
                fjac = new Matrix(tmpT);
            }
            else
            {
                Matrix tmpT = Matrix.transpose(initJacobian_);
                fjac = new Matrix(tmpT);
            }
            return(fjac);
        }
示例#4
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();

            currentProblem_ = P;
            initCostValues_ = P.costFunction().values(x_);
            int m = initCostValues_.size();
            int n = x_.size();

            if (useCostFunctionsJacobian_)
            {
                initJacobian_ = new Matrix(m, n);
                P.costFunction().jacobian(initJacobian_, x_);
            }

            Vector xx = new Vector(x_);
            Vector fvec = new Vector(m), diag = new Vector(n);

            int    mode   = 1;
            double factor = 1;
            int    nprint = 0;
            int    info   = 0;
            int    nfev   = 0;

            Matrix fjac = new Matrix(m, n);

            int ldfjac = m;

            List <int> ipvt = new InitializedList <int>(n);
            Vector     qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m);

            // call lmdif to minimize the sum of the squares of m functions
            // in n variables by the Levenberg-Marquardt algorithm.
            Func <int, int, Vector, int, Matrix> j = null;

            if (useCostFunctionsJacobian_)
            {
                j = jacFcn;
            }

            // requirements; check here to get more detailed error messages.
            Utils.QL_REQUIRE(n > 0, () => "no variables given");
            Utils.QL_REQUIRE(m >= n, () => $"less functions ({m}) than available variables ({n})");
            Utils.QL_REQUIRE(endCriteria.functionEpsilon() >= 0.0, () => "negative f tolerance");
            Utils.QL_REQUIRE(xtol_ >= 0.0, () => "negative x tolerance");
            Utils.QL_REQUIRE(gtol_ >= 0.0, () => "negative g tolerance");
            Utils.QL_REQUIRE(endCriteria.maxIterations() > 0, () => "null number of evaluations");

            MINPACK.lmdif(m, n, xx, ref fvec,
                          endCriteria.functionEpsilon(),
                          xtol_,
                          gtol_,
                          endCriteria.maxIterations(),
                          epsfcn_,
                          diag, mode, factor,
                          nprint, ref info, ref nfev, ref fjac,
                          ldfjac, ref ipvt, ref qtf,
                          wa1, wa2, wa3, wa4,
                          fcn, j);
            info_ = info;
            // check requirements & endCriteria evaluation
            Utils.QL_REQUIRE(info != 0, () => "MINPACK: improper input parameters");
            if (info != 6)
            {
                ecType = EndCriteria.Type.StationaryFunctionValue;
            }
            endCriteria.checkMaxIterations(nfev, ref ecType);
            Utils.QL_REQUIRE(info != 7, () => "MINPACK: xtol is too small. no further " +
                             "improvement in the approximate " +
                             "solution x is possible.");
            Utils.QL_REQUIRE(info != 8, () => "MINPACK: gtol is too small. fvec is " +
                             "orthogonal to the columns of the " +
                             "jacobian to machine precision.");
            // set problem
            x_ = new Vector(xx.GetRange(0, n));
            P.setCurrentValue(x_);
            P.setFunctionValue(P.costFunction().value(x_));

            return(ecType);
        }