示例#1
0
        public Vector <double>[] GetFeatures()
        {
            var allFeatures = new Vector <double> [NeuronsCount];

            for (var i = 0; i < Weights.RowCount; i++)
            {
                var norm     = Weights.Row(i).L2Norm();
                var features = Weights.Row(i).Divide(norm);

                allFeatures[i] = features;
            }

            return(allFeatures);
        }
示例#2
0
        //skrizi jedincov
        private matica skriz(matica OldPop, matica NewPop, int[] v, int lstring, int i, int j)
        {
            List<double[]> listPrvkov1 = new List<double[]>();
            List<double[]> listPrvkov2 = new List<double[]>();
            int[] newV = new int[v.Length + 2];
            v.CopyTo(newV,1);
            newV[0]=0;
            newV[newV.Length-1]=lstring;
            for (int a = 0; a < newV.Length - 1; a++)
            {
                if (a % 2 == 0)
                {
                    listPrvkov1.Add(OldPop.Row(i, v[a], v[a + 1]).ToArray());
                    listPrvkov2.Add(OldPop.Row(j, v[a], v[a + 1]).ToArray());
                }
                else
                {
                    listPrvkov1.Add(OldPop.Row(j, v[a], v[a + 1]).ToArray());
                    listPrvkov2.Add(OldPop.Row(i, v[a], v[a + 1]).ToArray());
                }
            }
            double[] row = spoj(listPrvkov1);
            NewPop.SetRow(i, row);
            row = spoj(listPrvkov2);
            NewPop.SetRow(j, row);

            return NewPop;
        }
示例#3
0
        internal Vector SolveInternal(Matrix A, Vector b, Vector c, StartingBasis B, Matrix AB, Vector bB)
        {
            //Init simplex
            var m = A.RowCount;

            var ABi = AB.Inverse();
            //X is a starting vector
            var x = AB.LU().Solve(bB);

            while (true)
            {
                iteration++;
                //Compute lambda (cT*AB.inv())T
                var lambda = (c.ToRowMatrix()*ABi).Transpose().ToRowWiseArray();

                //check for optimality
                if (lambda.All(l => l >= 0)) return (Vector) x;

                //Find leaving index r (first index where component < 0)
                var r = lambda.Select((i, index) => new {i, index})
                              .Where((i, index) => i.i < 0)
                              .First().index;

                //compute direction to move int - take r-th column
                var d = ABi.Column(r)*(-1);

                //Determine the set K (all indexes of positive values of lambda)
                //all k that a(k).T*d>0, 1 <= i <=m
                var K = new List<int>();
                for (int k = 0; k < m; k++)
                {
                    var val = A.Row(k)*d;

                    if (val > 0 && !val.FloatEquals(0))
                        K.Add(k);
                }

                if (K.Count == 0)
                    throw new SimplexException("Problem is unbounded") {Iteration = iteration};

                //Find entering index e
                int e = 0;
                var v = double.MaxValue;
                foreach (var k in K)
                {
                    var w = (b[k] - A.Row(k)*x)/(A.Row(k)*d);
                    if (!(w < v)) continue;
                    v = w;
                    e = k;
                }

                //Update basis
                B.InequalityIndexes[r] = e;
                AB.SetRow(r, A.Row(e));
                bB[r] = b[e];

                //Trick - lets update inverse AB in a smart way - sinse there is only one new inequality we only need to
                //compute new inversed row (should drop complexity of whole algo to n*n)
                var f = AB.Row(r)*ABi;

                var g = -f;
                g[r] = 1;
                g /= f[r];

                g[r] -= 1;

                ABi = ABi.Add(ABi.Column(r).ToColumnMatrix()*g.ToRowMatrix());
                //Compute new x
                x = x + v*d;
            }
        }