示例#1
0
        /// <summary>
        /// Puts the strictly upper triangle of this matrix into the result matrix.
        /// </summary>
        /// <param name="result">Where to store the lower triangle.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="result"/> is <see langword="null" />.</exception>
        /// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
        public override void StrictlyUpperTriangle(Matrix <double> result)
        {
            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
            {
                throw DimensionsDontMatch <ArgumentException>(this, result, "result");
            }

            result.Clear();
        }
示例#2
0
        /// <summary>
        /// Negate each element of this matrix and place the results into the result matrix.
        /// </summary>
        /// <param name="result">The result of the negation.</param>
        protected override void DoNegate(Matrix <double> result)
        {
            if (result is DiagonalMatrix diagResult)
            {
                LinearAlgebraControl.Provider.ScaleArray(-1, _data, diagResult._data);
                return;
            }

            result.Clear();
            for (var i = 0; i < _data.Length; i++)
            {
                result.At(i, i, -_data[i]);
            }
        }
        /// <summary>
        /// Multiplies the transpose of this matrix with another matrix and places the results into the result matrix.
        /// </summary>
        /// <param name="other">The matrix to multiply with.</param>
        /// <param name="result">The result of the multiplication.</param>
        protected override void DoTransposeThisAndMultiply(Matrix <double> other, Matrix <double> result)
        {
            var diagonalOther  = other as DiagonalMatrix;
            var diagonalResult = result as DiagonalMatrix;

            if (diagonalOther != null && diagonalResult != null)
            {
                var thisDataCopy  = new double[diagonalResult._data.Length];
                var otherDataCopy = new double[diagonalResult._data.Length];
                Array.Copy(_data, thisDataCopy, (diagonalResult._data.Length > _data.Length) ? _data.Length : diagonalResult._data.Length);
                Array.Copy(diagonalOther._data, otherDataCopy, (diagonalResult._data.Length > diagonalOther._data.Length) ? diagonalOther._data.Length : diagonalResult._data.Length);
                Control.LinearAlgebraProvider.PointWiseMultiplyArrays(thisDataCopy, otherDataCopy, diagonalResult._data);
                return;
            }

            var denseOther = other.Storage as DenseColumnMajorMatrixStorage <double>;

            if (denseOther != null)
            {
                var dense    = denseOther.Data;
                var diagonal = _data;
                var d        = Math.Min(denseOther.RowCount, ColumnCount);
                if (d < ColumnCount)
                {
                    result.ClearSubMatrix(denseOther.RowCount, ColumnCount - denseOther.RowCount, 0, denseOther.ColumnCount);
                }
                int index = 0;
                for (int i = 0; i < denseOther.ColumnCount; i++)
                {
                    for (int j = 0; j < d; j++)
                    {
                        result.At(j, i, dense[index] * diagonal[j]);
                        index++;
                    }
                    index += (denseOther.RowCount - d);
                }
                return;
            }

            if (ColumnCount == RowCount)
            {
                other.Storage.MapIndexedTo(result.Storage, (i, j, x) => x * _data[i], Zeros.AllowSkip, ExistingData.Clear);
            }
            else
            {
                result.Clear();
                other.Storage.MapSubMatrixIndexedTo(result.Storage, (i, j, x) => x * _data[i], 0, 0, other.RowCount, 0, 0, other.ColumnCount, Zeros.AllowSkip, ExistingData.AssumeZeros);
            }
        }
示例#4
0
        /// <summary>
        /// Create a new diagonal matrix with diagonal values sampled from the provided random distribution.
        /// </summary>


        /// <summary>
        /// Negate each element of this matrix and place the results into the result matrix.
        /// </summary>
        /// <param name="result">The result of the negation.</param>
        protected override void DoNegate(Matrix <double> result)
        {
            var diagResult = result as DiagonalMatrix;

            if (diagResult != null)
            {
                Map(x => - x, result, Zeros.AllowSkip);
                return;
            }

            result.Clear();
            for (var i = 0; i < _data.Length; i++)
            {
                result.At(i, i, -_data[i]);
            }
        }
        /// <summary>
        /// Puts the lower triangle of this matrix into the result matrix.
        /// </summary>
        /// <param name="result">Where to store the lower triangle.</param>
        /// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
        public override void LowerTriangle(Matrix <double> result)
        {
            if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
            {
                throw DimensionsDontMatch <ArgumentException>(this, result, "result");
            }

            if (ReferenceEquals(this, result))
            {
                return;
            }

            result.Clear();
            for (var i = 0; i < _data.Length; i++)
            {
                result.At(i, i, _data[i]);
            }
        }
        /// <summary>
        /// Puts the upper triangle of this matrix into the result matrix.
        /// </summary>
        /// <param name="result">Where to store the lower triangle.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="result"/> is <see langword="null" />.</exception>
        /// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
        public override void UpperTriangle(Matrix <double> result)
        {
            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
            {
                throw DimensionsDontMatch <ArgumentException>(this, result, "result");
            }

            result.Clear();
            for (var i = 0; i < _data.Length; i++)
            {
                result.At(i, i, _data[i]);
            }
        }
示例#7
0
        /// <summary>
        /// Divides each element of the matrix by a scalar and places results into the result matrix.
        /// </summary>
        /// <param name="divisor">The scalar to divide the matrix with.</param>
        /// <param name="result">The matrix to store the result of the division.</param>
        protected override void DoDivide(double divisor, Matrix <double> result)
        {
            if (divisor == 1.0)
            {
                CopyTo(result);
                return;
            }

            if (result is DiagonalMatrix diagResult)
            {
                LinearAlgebraControl.Provider.ScaleArray(1.0 / divisor, _data, diagResult._data);
                return;
            }

            result.Clear();
            for (int i = 0; i < _data.Length; i++)
            {
                result.At(i, i, _data[i] / divisor);
            }
        }
示例#8
0
        /// <summary>
        /// Divides a scalar by each element of the matrix and stores the result in the result matrix.
        /// </summary>
        /// <param name="dividend">The scalar to add.</param>
        /// <param name="result">The matrix to store the result of the division.</param>
        protected override void DoDivideByThis(double dividend, Matrix <double> result)
        {
            if (result is DiagonalMatrix diagResult)
            {
                var resultData = diagResult._data;
                CommonParallel.For(0, _data.Length, 4096, (a, b) =>
                {
                    for (int i = a; i < b; i++)
                    {
                        resultData[i] = dividend / _data[i];
                    }
                });
                return;
            }

            result.Clear();
            for (int i = 0; i < _data.Length; i++)
            {
                result.At(i, i, dividend / _data[i]);
            }
        }
示例#9
0
        /// <summary>
        /// Divides a scalar by each element of the matrix and stores the result in the result matrix.
        /// </summary>
        /// <param name="dividend">The scalar to add.</param>
        /// <param name="result">The matrix to store the result of the division.</param>
        protected override void DoDivideByThis(double dividend, Matrix <double> result)
        {
            var diagResult = result as DiagonalMatrix;

            if (diagResult != null)
            {
                var resultData = diagResult._data;

                for (int i = 0; i < _data.Length; i++)
                {
                    resultData[i] = dividend / _data[i];
                }

                return;
            }

            result.Clear();
            for (int i = 0; i < _data.Length; i++)
            {
                result.At(i, i, dividend / _data[i]);
            }
        }
示例#10
0
        /// <summary>
        /// Divides each element of the matrix by a scalar and places results into the result matrix.
        /// </summary>
        /// <param name="divisor">The scalar to divide the matrix with.</param>
        /// <param name="result">The matrix to store the result of the division.</param>
        protected override void DoDivide(double divisor, Matrix <double> result)
        {
            if (divisor == 1.0)
            {
                CopyTo(result);
                return;
            }

            var diagResult = result as DiagonalMatrix;

            if (diagResult != null)
            {
                Map(x => x / divisor, result, divisor == 0.0 ? Zeros.Include : Zeros.AllowSkip);
                return;
            }

            result.Clear();
            for (int i = 0; i < _data.Length; i++)
            {
                result.At(i, i, _data[i] / divisor);
            }
        }
示例#11
0
        /// <summary>
        /// Multiplies each element of the matrix by a scalar and places results into the result matrix.
        /// </summary>
        /// <param name="scalar">The scalar to multiply the matrix with.</param>
        /// <param name="result">The matrix to store the result of the multiplication.</param>
        /// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
        protected override void DoMultiply(double scalar, Matrix <double> result)
        {
            if (scalar == 0.0)
            {
                result.Clear();
                return;
            }

            if (scalar == 1.0)
            {
                CopyTo(result);
                return;
            }

            if (result is DiagonalMatrix diagResult)
            {
                LinearAlgebraControl.Provider.ScaleArray(scalar, _data, diagResult._data);
            }
            else
            {
                base.DoMultiply(scalar, result);
            }
        }
        /// <summary>
        ///     Puts the upper triangle of this matrix into the result matrix.
        /// </summary>
        /// <param name="result">Where to store the lower triangle.</param>
        /// <exceptioncreArgumentNullException">If
        ///
        /// <paramref name="result is
        ///
        /// <see langword="null" />
        /// .
        /// </exception>
        /// <exceptioncreArgumentException">If the result matrix's dimensions are not the same as this matrix.
        ///
        /// </exception>
        public void UpperTriangle(Matrix <double> result)
        {
            if (result == null)
            {
                throw new ArgumentNullException(nameof(result));
            }

            if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
            {
                throw DimensionsDontMatch <ArgumentException>(this, result, "result");
            }

            if (ReferenceEquals(this, result))
            {
                var tmp = Build.SameAs(result);
                UpperTriangle(tmp);
                tmp.CopyTo(result);
            }
            else
            {
                result.Clear();
                UpperTriangleImpl(result);
            }
        }
        /// <summary>
        ///     Multiplies this matrix with another matrix and places the results into the result matrix.
        /// </summary>
        /// <param name="other">The matrix to multiply with.</param>
        /// <param name="result">The result of the multiplication.</param>
        protected override void DoMultiply(Matrix <double> other, Matrix <double> result)
        {
            var sparseOther  = other as SparseMatrix;
            var sparseResult = result as SparseMatrix;

            if (sparseOther != null && sparseResult != null)
            {
                DoMultiplySparse(sparseOther, sparseResult);
                return;
            }

            var diagonalOther = other.Storage as DiagonalMatrixStorage <double>;

            if (diagonalOther != null && sparseResult != null)
            {
                var diagonal = diagonalOther.Data;
                if (other.ColumnCount == other.RowCount)
                {
                    Storage.MapIndexedTo(result.Storage, (i, j, x) => x * diagonal[j], Zeros.AllowSkip,
                                         ExistingData.Clear);
                }
                else
                {
                    result.Storage.Clear();
                    Storage.MapSubMatrixIndexedTo(result.Storage, (i, j, x) => x * diagonal[j], 0, 0, RowCount, 0, 0,
                                                  ColumnCount, Zeros.AllowSkip, ExistingData.AssumeZeros);
                }

                return;
            }

            result.Clear();
            var rowPointers   = _storage.RowPointers;
            var columnIndices = _storage.ColumnIndices;
            var values        = _storage.Values;

            var denseOther = other.Storage as DenseColumnMajorMatrixStorage <double>;

            if (denseOther != null)
            {
                // in this case we can directly address the underlying data-array
                for (var row = 0; row < RowCount; row++)
                {
                    var startIndex = rowPointers[row];
                    var endIndex   = rowPointers[row + 1];

                    if (startIndex == endIndex)
                    {
                        continue;
                    }

                    for (var column = 0; column < other.ColumnCount; column++)
                    {
                        var otherColumnStartPosition = column * other.RowCount;
                        var sum = 0d;
                        for (var index = startIndex; index < endIndex; index++)
                        {
                            sum += values[index] * denseOther.Data[otherColumnStartPosition + columnIndices[index]];
                        }

                        result.At(row, column, sum);
                    }
                }

                return;
            }

            var columnVector = new DenseVector(other.RowCount);

            for (var row = 0; row < RowCount; row++)
            {
                var startIndex = rowPointers[row];
                var endIndex   = rowPointers[row + 1];

                if (startIndex == endIndex)
                {
                    continue;
                }

                for (var column = 0; column < other.ColumnCount; column++)
                {
                    // Multiply row of matrix A on column of matrix B
                    other.Column(column, columnVector);

                    var sum = 0d;
                    for (var index = startIndex; index < endIndex; index++)
                    {
                        sum += values[index] * columnVector[columnIndices[index]];
                    }

                    result.At(row, column, sum);
                }
            }
        }