示例#1
0
        /// <summary>
        /// Constructs a new instance of the KDNode.
        /// </summary>
        /// <param name="key">A Hyper Point representing the key to use for storing this value</param>
        /// <param name="value">A valid object value to use for copying this.</param>
        /// <remarks>The constructor is used only by class; other methods are static</remarks>
        private KdNode(HPoint key, object value)
        {

            _k = key;
            _v = value;
            _left = null;
            _right = null;
            _isDeleted = false;
        }
示例#2
0
        /// <summary>
        /// This method was written by Ted Dunsford by restructuring the nearest neighbor
        /// algorithm presented by Andrew and Bjoern
        /// </summary>
        /// <param name="kd">Since this is recursive, this represents the current node</param>
        /// <param name="target">The target is the HPoint that we are trying to calculate the farthest distance from</param>
        /// <param name="hr">In this case, the hr is the hyper rectangle bounding the region that must contain the furthest point.</param>
        /// <param name="maxDistSqd">The maximum distance that we have calculated thus far, and will therefore be testing against.</param>
        /// <param name="lev">The integer based level of that we have recursed to in the tree</param>
        /// <param name="k">The dimensionality of the kd tree</param>
        /// <param name="fnl">A list to contain the output, prioritized by distance</param>
        public static void FarthestNeighbor(KdNode kd, HPoint target, HRect hr,
                              double maxDistSqd, int lev, int k,
                              FarthestNeighborList fnl)
        {

            // 1. if kd is empty then set dist-sqd to infinity and exit.
            if (kd == null)
            {
                return;
            }

            // 2. s := split field of kd
            int s = lev % k;

            // 3. pivot := dom-elt field of kd
            HPoint pivot = kd._k;
            double pivotToTarget = HPoint.SquareDistance(pivot, target);

            // 4. Cut hr into to sub-hyperrectangles left-hr and right-hr.
            //    The cut plane is through pivot and perpendicular to the s
            //    dimension.
            HRect leftHr = hr; // optimize by not cloning
            HRect rightHr = hr.Copy();
            leftHr._max[s] = pivot[s];
            rightHr._min[s] = pivot[s];

            // 5. target-in-left := target_s <= pivot_s
            bool targetInLeft = target[s] < pivot[s];

            KdNode nearerKd;
            HRect nearerHr;
            KdNode furtherKd;
            HRect furtherHr;

            // 6. if target-in-left then
            //    6.1. nearer-kd := left field of kd and nearer-hr := left-hr
            //    6.2. further-kd := right field of kd and further-hr := right-hr
            if (targetInLeft)
            {
                nearerKd = kd._left;
                nearerHr = leftHr;
                furtherKd = kd._right;
                furtherHr = rightHr;
            }
            //
            // 7. if not target-in-left then
            //    7.1. nearer-kd := right field of kd and nearer-hr := right-hr
            //    7.2. further-kd := left field of kd and further-hr := left-hr
            else
            {
                nearerKd = kd._right;
                nearerHr = rightHr;
                furtherKd = kd._left;
                furtherHr = leftHr;
            }

            // 8. Recursively call Nearest Neighbor with paramters
            //    (nearer-kd, target, nearer-hr, max-dist-sqd), storing the
            //    results in nearest and dist-sqd
            //FarthestNeighbor(nearer_kd, target, nearer_hr, max_dist_sqd, lev + 1, K, nnl);
            
            // This line changed by Ted Dunsford to attempt to find the farther point
            FarthestNeighbor(furtherKd, target, furtherHr, maxDistSqd, lev + 1, k, fnl);

            //KDNode nearest = (KDNode)nnl.Highest;
            double distSqd;

            if (!fnl.IsCapacityReached)
            {
                //dist_sqd = 1.79769e+30;// Double.MaxValue;
                distSqd = 0;
            }
            else
            {
                distSqd = fnl.MinimumPriority;
            }

            // 9. max-dist-sqd := minimum of max-dist-sqd and dist-sqd
            //max_dist_sqd = Math.Min(max_dist_sqd, dist_sqd);

            maxDistSqd = Math.Max(maxDistSqd, distSqd);

            // 10. A nearer point could only lie in further-kd if there were some
            //     part of further-hr within distance sqrt(max-dist-sqd) of
            //     target.  If this is the case then
            // HPoint closest = further_hr.Closest(target);
            HPoint furthest = nearerHr.Farthest(target);
            //if (HPoint.EuclideanDistance(closest, target) < Math.Sqrt(max_dist_sqd))
            if(HPoint.EuclideanDistance(furthest, target) > Math.Sqrt(maxDistSqd))
            {

                // 10.1 if (pivot-target)^2 < dist-sqd then
                if (pivotToTarget > distSqd)
                {

                    // 10.1.1 nearest := (pivot, range-elt field of kd)
                    //nearest = kd;

                    // 10.1.2 dist-sqd = (pivot-target)^2
                    distSqd = pivotToTarget;

                    // add to nnl
                    if (!kd.IsDeleted)
                    {
                        fnl.Insert(kd, distSqd);
                    }

                    // 10.1.3 max-dist-sqd = dist-sqd
                    // max_dist_sqd = dist_sqd;
                    if (fnl.IsCapacityReached)
                    {
                        maxDistSqd = fnl.MinimumPriority;
                    }
                    else
                    {
                        // max_dist_sqd = 1.79769e+30;//Double.MaxValue;
                        maxDistSqd = 0;
                    }
                }

                // 10.2 Recursively call Nearest Neighbor with parameters
                //      (further-kd, target, further-hr, max-dist_sqd),
                //      storing results in temp-nearest and temp-dist-sqd
                FarthestNeighbor(nearerKd, target, nearerHr, maxDistSqd, lev + 1, k, fnl);
                KdNode tempFarthest = (KdNode)fnl.Farthest;
                double tempDistSqd = fnl.MinimumPriority;

                // 10.3 If tmp-dist-sqd < dist-sqd then
                if (tempDistSqd > distSqd)
                {

                    // 10.3.1 nearest := temp_nearest and dist_sqd := temp_dist_sqd
                    distSqd = tempDistSqd;
                }
            }

            // SDL: otherwise, current point is nearest
            else if (pivotToTarget < maxDistSqd)
            {
                distSqd = pivotToTarget;
            }
        }
示例#3
0
        /// <summary>
        /// Searches for values in a range
        /// </summary>
        /// <param name="lowk"></param>
        /// <param name="uppk"></param>
        /// <param name="t"></param>
        /// <param name="lev"></param>
        /// <param name="k"></param>
        /// <param name="v"></param>
        /// <remarks>Method rsearch translated from 352.range.c of Gonnet and Baeza-Yates</remarks>
        public static void SearchRange(HPoint lowk, HPoint uppk, KdNode t, int lev,
                  int k, List<KdNode> v)
        {

            if (t == null) return;
            if (lowk[lev] <= t._k[lev])
            {
                SearchRange(lowk, uppk, t._left, (lev + 1) % k, k, v);
            }
            int j;
            for (j = 0; j < k && lowk[j] <= t._k[j] &&
                 uppk[j] >= t._k[j]; j++)
            {
            }
            if (j == k) v.Add(t);
            if (uppk[lev] > t._k[lev])
            {
                SearchRange(lowk, uppk, t._right, (lev + 1) % k, k, v);
            }
        }
示例#4
0
        /// <summary>
        /// Searches for a specific value
        /// </summary>
        /// <param name="key"></param>
        /// <param name="t"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        /// <remarks>Method srch translated from 352.srch.c of Gonnet and Baeza-Yates</remarks>
        public static KdNode Search(HPoint key, KdNode t, int k)
        {

            for (int lev = 0; t != null; lev = (lev + 1) % k)
            {
                if (!t.IsDeleted && key.Equals(t._k))
                {
                    return t;
                }
                t = key[lev] > t._k[lev] ? t._right : t._left;
            }

            return null;
        }
示例#5
0
        /// <summary>
        /// Inserts a
        /// </summary>
        /// <param name="key"></param>
        /// <param name="value"></param>
        /// <param name="t"></param>
        /// <param name="lev"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        /// <remarks> Method ins translated from 352.ins.c of Gonnet and Baeza-Yates</remarks>
        public static KdNode Insert(HPoint key, object value, KdNode t, int lev, int k)
        {
            if (t == null)
            {
                t = new KdNode(key, value);
            }

            else if (key.Equals(t._k))
            {

                // "re-insert"
                if (t.IsDeleted)
                {
                    t.IsDeleted = false;
                    t._v = value;
                }

                else
                {
                    throw (new KeyDuplicateException());
                }
            }

            else if (key[lev] > t._k[lev])
            {
                t._right = Insert(key, value, t._right, (lev + 1) % k, k);
            }
            else
            {
                t._left = Insert(key, value, t._left, (lev + 1) % k, k);
            }

            return t;
        }
示例#6
0
 /// <summary>
 /// Creates a new tree with the specified number of dimensions.
 /// </summary>
 /// <param name="k">An integer value specifying how many ordinates each key should have.</param>
 public KDTree(int k)
 {
     if (k < 0) throw new NegativeArgumentException("k");
     _k = k;
     _root = null;
 }
示例#7
0
 /// <summary>
 /// Insert a node into the KD-tree. 
 /// </summary>
 /// <param name="key">The array of double valued keys marking the position to insert this object into the tree</param>
 /// <param name="value">The object value to insert into the tree</param>
 /// <exception cref="KeySizeException"> if key.length mismatches the dimension of the tree (K)</exception>
 /// <exception cref="KeyDuplicateException"> if the key already exists in the tree</exception>
 /// <remarks>
 /// Uses algorithm translated from 352.ins.c of
 ///   &#064;Book{GonnetBaezaYates1991,                                   
 ///   author =    {G.H. Gonnet and R. Baeza-Yates},
 ///   title =     {Handbook of Algorithms and Data Structures},
 ///   publisher = {Addison-Wesley},
 ///   year =      {1991}
 /// </remarks>
 public void Insert(double[] key, object value)
 {
     if (key.Length != _k) throw new KeySizeException();
     
     _root = KdNode.Insert(new HPoint(key), value, _root, 0, _k);
     
     _count++;
 }