//Define Quantization Table private static void DQT(Bitstream bs) { ushort marker = 0xFFDB; ushort length = 2 + 2 + 64; byte QTY = 0; // Bit 0-3: Number of QTable. Bit 4-7 precission. -> Table for Y with precision of 8 bit byte QTCbCr = 1; // 1 (quantization table for CB,CR) byte[] outputYTable = new byte[64]; // 64*(precision+1) byte[] outputCrCbTable = new byte[64]; for (int i = 0; i < 64; i++) { //position at position i from zigzag = temp outputYTable[ZigZagTable[i]] = QTYStandard[i]; } for (int i = 0; i < 64; i++) { outputCrCbTable[ZigZagTable[i]] = QTCrCbStandard[i]; } bs.AddShort(marker); bs.AddShort(length); bs.AddByteSpecial(QTY); bs.WriteByteArray(bs, outputYTable, 0); bs.AddByteSpecial(QTCbCr); bs.WriteByteArray(bs, outputCrCbTable, 0); }
private static void DHTHead(Bitstream bs) { //Huffman-Code with only 1 Bits is not allowed //Maximum Huffman depth is 16 ushort length; byte hTInformation = 0x00; // bit 0..3 = number of HT //bit 4 = type of HT, 0 = DC, 1 = AC //bit 5..7 = must be 0 // How many codes with symbol 1 byte[] symbolLength = new byte[16]; // quantity of symbols with codeLength between 1..16 (Sum of symbols must be <= 256) byte[] table; // n bytes, n = total number of symbols //HuffmanEncoder he = new HuffmanEncoder(); length = (ushort)(2 + 1 + 16 + HuffmanEncoder.huffmanTable.Count); // length = addition of bytes of each segment table = new byte[HuffmanEncoder.huffmanTable.Count]; //counts for each Values (List<bool>) the number of objects in it and saves it to symbolLength for (int k = 0; k < HuffmanEncoder.huffmanTable.Count; k++) { int temp = 0; foreach (List <bool> sl in HuffmanEncoder.huffmanTable.Values) { if (k == sl.Count) { temp++; } } symbolLength[k] = (byte)temp; } int j = 0; foreach (var symbolCount in HuffmanEncoder.huffmanTable.Keys) { table[j++] = symbolCount; } bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(hTInformation); bs.WriteByteArray(bs, symbolLength, 0); bs.WriteByteArray(bs, table, 0); }
private static void DHTHead(Bitstream bs) { //Huffman-Code with only 1 Bits is not allowed //Maximum Huffman depth is 16 ushort length; byte hTInformation = 0x00; // bit 0..3 = number of HT //bit 4 = type of HT, 0 = DC, 1 = AC //bit 5..7 = must be 0 // How many codes with symbol 1 byte[] symbolLength = new byte[16]; // quantity of symbols with codeLength between 1..16 (Sum of symbols must be <= 256) byte[] table; // n bytes, n = total number of symbols //HuffmanEncoder he = new HuffmanEncoder(); length = (ushort)(2 + 1 + 16 + HuffmanEncoder.huffmanTable.Count); // length = addition of bytes of each segment table = new byte[HuffmanEncoder.huffmanTable.Count]; //counts for each Values (List<bool>) the number of objects in it and saves it to symbolLength for (int k = 0; k < HuffmanEncoder.huffmanTable.Count; k++) { int temp = 0; foreach (List<bool> sl in HuffmanEncoder.huffmanTable.Values) { if (k == sl.Count) temp++; } symbolLength[k] = (byte)temp; } int j = 0; foreach (var symbolCount in HuffmanEncoder.huffmanTable.Keys) { table[j++] = symbolCount; } bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(hTInformation); bs.WriteByteArray(bs, symbolLength, 0); bs.WriteByteArray(bs, table, 0); }
//Define Quantization Table private static void DQT(Bitstream bs) { ushort marker = 0xFFDB; ushort length = 2+2+64; byte QTY = 0; // Bit 0-3: Number of QTable. Bit 4-7 precission. -> Table for Y with precision of 8 bit byte QTCbCr = 1; // 1 (quantization table for CB,CR) byte[] outputYTable = new byte[64]; // 64*(precision+1) byte[] outputCrCbTable = new byte[64]; for (int i = 0; i < 64; i++) { //position at position i from zigzag = temp outputYTable[ZigZagTable[i]] = QTYStandard[i]; } for (int i = 0; i < 64; i++) { outputCrCbTable[ZigZagTable[i]] = QTCrCbStandard[i]; } bs.AddShort(marker); bs.AddShort(length); bs.AddByteSpecial(QTY); bs.WriteByteArray(bs, outputYTable, 0); bs.AddByteSpecial(QTCbCr); bs.WriteByteArray(bs, outputCrCbTable, 0); }
private static void DHTHeadStandard(Bitstream bs) { // standards for 2:1 horicontal subsampling ushort length = 0x01A2;//DHTheadlänge byte AC = 0x10;//Durchschnittsfrequenz byte DC = 0x00;//min->max Frequenz byte[] YDCNodes = { 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; byte[] YDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] YACNodes = { 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; byte[] YACValues = {0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; byte[] CbDCNodes = { 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; byte[] CbDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] CbACNodes = { 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; byte[] CbACValues = {0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(DC); //HTInformation for YDC bs.WriteByteArray(bs, YDCNodes, 1); // 1 is startposition after the byte of HTInformation for YDC bs.WriteByteArray(bs, YDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, YACNodes, 1); bs.WriteByteArray(bs, YACValues, 0); bs.AddByteSpecial(DC); bs.WriteByteArray(bs, CbDCNodes, 1); bs.WriteByteArray(bs, CbDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, CbACNodes, 1); bs.WriteByteArray(bs, CbACValues, 0); }
private static void DHTHeadStandard(Bitstream bs) { // standards for 2:1 horicontal subsampling ushort length = 0x01A2; //DHTheadlänge byte AC = 0x10; //Durchschnittsfrequenz byte DC = 0x00; //min->max Frequenz byte[] YDCNodes = { 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; byte[] YDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] YACNodes = { 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; byte[] YACValues = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; byte[] CbDCNodes = { 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; byte[] CbDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] CbACNodes = { 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; byte[] CbACValues = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(DC); //HTInformation for YDC bs.WriteByteArray(bs, YDCNodes, 1); // 1 is startposition after the byte of HTInformation for YDC bs.WriteByteArray(bs, YDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, YACNodes, 1); bs.WriteByteArray(bs, YACValues, 0); bs.AddByteSpecial(DC); bs.WriteByteArray(bs, CbDCNodes, 1); bs.WriteByteArray(bs, CbDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, CbACNodes, 1); bs.WriteByteArray(bs, CbACValues, 0); }