private static void SOS(Bitstream bs) { ushort marker = 0xFFDA; ushort length = 12; // 6 + 2 * (number of components) byte NROFComponents = 3; // Number of Components in Picture 1 or 3 byte IdY = 1; // component ID byte HTY = 0x11; // Bits 0-3: AC Table byte IdCb = 2; //TODO: überprüfe ob richtig eingesetztes HT byte HTCb = 0x11; // Bits 4-7: DC Table byte IdCr = 3; byte HTCr = 0x11; // 0x11 would be AC and DC byte SS = 0; // start of spectral or prediction selection byte SE = 63; // end of spectral selection byte BF = 0; // successiv approcimation bs.AddShort(marker); bs.AddShort(length); bs.AddByteSpecial(NROFComponents); bs.AddByteSpecial(IdY); bs.AddByteSpecial(HTY); bs.AddByteSpecial(IdCb); bs.AddByteSpecial(HTCb); bs.AddByteSpecial(IdCr); bs.AddByteSpecial(HTCr); bs.AddByteSpecial(SS); bs.AddByteSpecial(SE); bs.AddByteSpecial(BF); }
private static void APP0Head(Bitstream bs) { ushort length = 16; // length of segment >=16 byte j = 0x4a; // string J byte f = 0x46; // string f byte i = 0x49; // string I byte zero = 0x00; // string #0 byte majorRevisionNumber = 1; byte minorRevisionNumber = 1; // together 1.1 byte xyunits = 0; // no unit = normal aspect ratio ushort xPixelDensity = 0x0048; // x density ushort yPixelDensity = 0x0048; // y density byte thumbnailWidth = 0; byte thumbnailHeight = 0; // no thumbnail bs.AddShort(0xFFE0); //marker bs.AddShort(length); //length bs.AddByteSpecial(j); bs.AddByteSpecial(f); bs.AddByteSpecial(i); bs.AddByteSpecial(f); bs.AddByteSpecial(zero); bs.AddByteSpecial(majorRevisionNumber); bs.AddByteSpecial(minorRevisionNumber); bs.AddByteSpecial(xyunits); bs.AddShort(xPixelDensity); bs.AddShort(yPixelDensity); bs.AddByteSpecial(thumbnailWidth); bs.AddByteSpecial(thumbnailHeight); }
private static void SOF0Head(Bitstream bs, ushort pHeight, ushort pWidth) { ushort length = 17; // 8 + (Y,Cb,Cr) * 3 byte precision = 8; // precision of data in bits/sample ushort pictureHeight = pHeight; ushort pictureWidth = pWidth; byte components = 3; // 3 for Y,Cb,Cr byte IDY = 1; // ID component 1 = Y byte SFY = 0x22; // sampling factor for Y (bit 0-3 vertical, bit 4-7 horicontal) byte QTY = 0; // quantization table of Y = 0 byte IDCb = 2; // ID component 2 = Cb byte SFCb = 0x11; byte QTCb = 0; // quantization table of Cb = 1 byte IDCr = 3; // ID component 3 = Cr byte SFCr = 0x11; byte QTCr = 0; bs.AddShort(0xFFC0); // marker bs.AddShort(length); bs.AddByteSpecial(precision); bs.AddShort(pictureHeight); bs.AddShort(pictureWidth); bs.AddByteSpecial(components); bs.AddByteSpecial(IDY); // 3 Bytes for each component bs.AddByteSpecial(SFY); bs.AddByteSpecial(QTY); bs.AddByteSpecial(IDCb); bs.AddByteSpecial(SFCb); bs.AddByteSpecial(QTCb); bs.AddByteSpecial(IDCr); bs.AddByteSpecial(SFCr); bs.AddByteSpecial(QTCr); }
//Define Quantization Table private static void DQT(Bitstream bs) { ushort marker = 0xFFDB; ushort length = 2 + 2 + 64; byte QTY = 0; // Bit 0-3: Number of QTable. Bit 4-7 precission. -> Table for Y with precision of 8 bit byte QTCbCr = 1; // 1 (quantization table for CB,CR) byte[] outputYTable = new byte[64]; // 64*(precision+1) byte[] outputCrCbTable = new byte[64]; for (int i = 0; i < 64; i++) { //position at position i from zigzag = temp outputYTable[ZigZagTable[i]] = QTYStandard[i]; } for (int i = 0; i < 64; i++) { outputCrCbTable[ZigZagTable[i]] = QTCrCbStandard[i]; } bs.AddShort(marker); bs.AddShort(length); bs.AddByteSpecial(QTY); bs.WriteByteArray(bs, outputYTable, 0); bs.AddByteSpecial(QTCbCr); bs.WriteByteArray(bs, outputCrCbTable, 0); }
private static void DHTHead(Bitstream bs) { //Huffman-Code with only 1 Bits is not allowed //Maximum Huffman depth is 16 ushort length; byte hTInformation = 0x00; // bit 0..3 = number of HT //bit 4 = type of HT, 0 = DC, 1 = AC //bit 5..7 = must be 0 // How many codes with symbol 1 byte[] symbolLength = new byte[16]; // quantity of symbols with codeLength between 1..16 (Sum of symbols must be <= 256) byte[] table; // n bytes, n = total number of symbols //HuffmanEncoder he = new HuffmanEncoder(); length = (ushort)(2 + 1 + 16 + HuffmanEncoder.huffmanTable.Count); // length = addition of bytes of each segment table = new byte[HuffmanEncoder.huffmanTable.Count]; //counts for each Values (List<bool>) the number of objects in it and saves it to symbolLength for (int k = 0; k < HuffmanEncoder.huffmanTable.Count; k++) { int temp = 0; foreach (List <bool> sl in HuffmanEncoder.huffmanTable.Values) { if (k == sl.Count) { temp++; } } symbolLength[k] = (byte)temp; } int j = 0; foreach (var symbolCount in HuffmanEncoder.huffmanTable.Keys) { table[j++] = symbolCount; } bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(hTInformation); bs.WriteByteArray(bs, symbolLength, 0); bs.WriteByteArray(bs, table, 0); }
private static void PictureStart(Bitstream bs) { //initialises JPG bs.AddShort(0xFFD8); }
private static void PictureEnd(Bitstream bs) { //Ends JPG bs.AddShort(0xffd9); }
//Define Quantization Table private static void DQT(Bitstream bs) { ushort marker = 0xFFDB; ushort length = 2+2+64; byte QTY = 0; // Bit 0-3: Number of QTable. Bit 4-7 precission. -> Table for Y with precision of 8 bit byte QTCbCr = 1; // 1 (quantization table for CB,CR) byte[] outputYTable = new byte[64]; // 64*(precision+1) byte[] outputCrCbTable = new byte[64]; for (int i = 0; i < 64; i++) { //position at position i from zigzag = temp outputYTable[ZigZagTable[i]] = QTYStandard[i]; } for (int i = 0; i < 64; i++) { outputCrCbTable[ZigZagTable[i]] = QTCrCbStandard[i]; } bs.AddShort(marker); bs.AddShort(length); bs.AddByteSpecial(QTY); bs.WriteByteArray(bs, outputYTable, 0); bs.AddByteSpecial(QTCbCr); bs.WriteByteArray(bs, outputCrCbTable, 0); }
private static void DHTHeadStandard(Bitstream bs) { // standards for 2:1 horicontal subsampling ushort length = 0x01A2;//DHTheadlänge byte AC = 0x10;//Durchschnittsfrequenz byte DC = 0x00;//min->max Frequenz byte[] YDCNodes = { 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; byte[] YDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] YACNodes = { 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; byte[] YACValues = {0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; byte[] CbDCNodes = { 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; byte[] CbDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] CbACNodes = { 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; byte[] CbACValues = {0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(DC); //HTInformation for YDC bs.WriteByteArray(bs, YDCNodes, 1); // 1 is startposition after the byte of HTInformation for YDC bs.WriteByteArray(bs, YDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, YACNodes, 1); bs.WriteByteArray(bs, YACValues, 0); bs.AddByteSpecial(DC); bs.WriteByteArray(bs, CbDCNodes, 1); bs.WriteByteArray(bs, CbDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, CbACNodes, 1); bs.WriteByteArray(bs, CbACValues, 0); }
public void PPMtoJpg(string imageSrc, string imagedest) { Bitstream bs = new Bitstream(); PlainFormatReader pfr = new PlainFormatReader(imageSrc); Mathloc ml = new Mathloc(); Picture pic = pfr.ReadPicture(); int height = pic.Head.pixelMaxY; int width = pic.Head.pixelMaxX; Color3[,] col3 = new Color3[height, width]; byte[] colors = new byte[3]; //convert RGB to YUV for each pixel for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { col3[y, x] = pic.Data.PictureYX[y, x]; colors[0] = col3[y, x].a; // R colors[1] = col3[y, x].b; // G colors[2] = col3[y, x].c; // B colors = ml.RGBToYUV(colors); col3[y, x].a = colors[0]; // Y col3[y, x].b = colors[1]; // U col3[y, x].c = colors[2]; // V } } //convert float array to byte array float[,] yArray = new float[width, height]; // width and height vertauscht float[,] uArray = new float[width, height]; float[,] vArray = new float[width, height]; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { yArray[i, j] = (float)col3[j, i].a; uArray[i, j] = (float)col3[j, i].b; vArray[i, j] = (float)col3[j, i].c; } } byte[,] yArrayEnde = new byte[width, height]; byte[,] uArrayEnde = new byte[width, height]; byte[,] vArrayEnde = new byte[width, height]; //get float [number of 8x8][8x8] var yarry = aufteilen(yArray); var uarry = aufteilen(uArray); var varry = aufteilen(vArray); //geht beim 40x40 bild 25 for (int y = 0; y < height / 8; y++) { for (int x = 0; x < width / 8; x++) { //DCTDirect for (int i = 0; i < ((height * width) / 64); i++) { yArray = DCT.DCTdirect(yarry[i]); uArray = DCT.DCTdirect(uarry[i]); vArray = DCT.DCTdirect(varry[i]); } //convert float array to byte array byte[,] yArrayB = new byte[width, height]; byte[,] uArrayB = new byte[width, height]; byte[,] vArrayB = new byte[width, height]; for (int i = 0; i < width / 8; i++) { for (int j = 0; j < height / 8; j++) { yArrayB[i, j] = (byte)yArray[i, j]; uArrayB[i, j] = (byte)uArray[i, j]; vArrayB[i, j] = (byte)vArray[i, j]; } } for (int i = 0; i < 8; i++) { for (int j = 0; j < 8; j++) { yArrayEnde[i * x, j *y] = yArrayB[i, j]; uArrayEnde[i * x, j *y] = uArrayB[i, j]; vArrayEnde[i * x, j *y] = vArrayB[i, j]; } } byte[] yArrayB2 = new byte[64]; byte[] uArrayB2 = new byte[64]; byte[] vArrayB2 = new byte[64]; for (int i = 0; i < 8; i++) { for (int j = 0; j < 8; j++) { yArrayB2[ZigZagTable2[i * j]] = yArrayB[i, j]; uArrayB2[ZigZagTable2[i * j]] = uArrayB[i, j]; vArrayB2[ZigZagTable2[i * j]] = vArrayB[i, j]; } } // Create Huffmantables //yArrayEnde = HuffmanCalc(YDCNodes, YDCValues, yArrayB2); //yArrayEnde = HuffmanCalc(YDCNodes, YACValues, yArrayB2); //uArrayEnde = HuffmanCalc(CbDCNodes, CbDCValues, uArrayB2); //uArrayEnde = HuffmanCalc(CbACNodes, CbACValues, uArrayB2); //vArrayEnde = HuffmanCalc(CbDCNodes, CbDCValues, vArrayB2); //vArrayEnde = HuffmanCalc(CbACNodes, CbACValues, vArrayB2); } } //create JPG head PictureHead.CreateJPGHead(bs, (ushort)height, (ushort)width); //TODO: DCT for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { bs.AddByte((byte)yArrayEnde[x, y]); bs.AddByte((byte)uArrayEnde[x, y]); bs.AddByte((byte)vArrayEnde[x, y]); } } bs.AddShort(0xffd9); //End of Picture Marker bs.WriteToFile(imagedest); }
private static void DHTHeadStandard(Bitstream bs) { // standards for 2:1 horicontal subsampling ushort length = 0x01A2; //DHTheadlänge byte AC = 0x10; //Durchschnittsfrequenz byte DC = 0x00; //min->max Frequenz byte[] YDCNodes = { 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; byte[] YDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] YACNodes = { 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; byte[] YACValues = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; byte[] CbDCNodes = { 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; byte[] CbDCValues = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; byte[] CbACNodes = { 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; byte[] CbACValues = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(DC); //HTInformation for YDC bs.WriteByteArray(bs, YDCNodes, 1); // 1 is startposition after the byte of HTInformation for YDC bs.WriteByteArray(bs, YDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, YACNodes, 1); bs.WriteByteArray(bs, YACValues, 0); bs.AddByteSpecial(DC); bs.WriteByteArray(bs, CbDCNodes, 1); bs.WriteByteArray(bs, CbDCValues, 0); bs.AddByteSpecial(AC); bs.WriteByteArray(bs, CbACNodes, 1); bs.WriteByteArray(bs, CbACValues, 0); }
private static void DHTHead(Bitstream bs) { //Huffman-Code with only 1 Bits is not allowed //Maximum Huffman depth is 16 ushort length; byte hTInformation = 0x00; // bit 0..3 = number of HT //bit 4 = type of HT, 0 = DC, 1 = AC //bit 5..7 = must be 0 // How many codes with symbol 1 byte[] symbolLength = new byte[16]; // quantity of symbols with codeLength between 1..16 (Sum of symbols must be <= 256) byte[] table; // n bytes, n = total number of symbols //HuffmanEncoder he = new HuffmanEncoder(); length = (ushort)(2 + 1 + 16 + HuffmanEncoder.huffmanTable.Count); // length = addition of bytes of each segment table = new byte[HuffmanEncoder.huffmanTable.Count]; //counts for each Values (List<bool>) the number of objects in it and saves it to symbolLength for (int k = 0; k < HuffmanEncoder.huffmanTable.Count; k++) { int temp = 0; foreach (List<bool> sl in HuffmanEncoder.huffmanTable.Values) { if (k == sl.Count) temp++; } symbolLength[k] = (byte)temp; } int j = 0; foreach (var symbolCount in HuffmanEncoder.huffmanTable.Keys) { table[j++] = symbolCount; } bs.AddShort(0xFFc4); //marker bs.AddShort(length); bs.AddByteSpecial(hTInformation); bs.WriteByteArray(bs, symbolLength, 0); bs.WriteByteArray(bs, table, 0); }
public void PPMtoJpg(string imageSrc, string imagedest) { Bitstream bs = new Bitstream(); PlainFormatReader pfr = new PlainFormatReader(imageSrc); Mathloc ml = new Mathloc(); Picture pic = pfr.ReadPicture(); int height = pic.Head.pixelMaxY; int width = pic.Head.pixelMaxX; Color3[,] col3 = new Color3[height,width]; byte[] colors = new byte[3]; //convert RGB to YUV for each pixel for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { col3[y, x] = pic.Data.PictureYX[y, x]; colors[0] = col3[y, x].a; // R colors[1] = col3[y, x].b; // G colors[2] = col3[y, x].c; // B colors = ml.RGBToYUV(colors); col3[y, x].a = colors[0]; // Y col3[y, x].b = colors[1]; // U col3[y, x].c = colors[2]; // V } } //convert float array to byte array float[,] yArray = new float[width, height]; // width and height vertauscht float[,] uArray = new float[width, height]; float[,] vArray = new float[width, height]; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i++) { yArray[i, j] = (float)col3[j, i].a; uArray[i, j] = (float)col3[j, i].b; vArray[i, j] = (float)col3[j, i].c; } } byte[,] yArrayEnde = new byte[width, height]; byte[,] uArrayEnde = new byte[width, height]; byte[,] vArrayEnde = new byte[width, height]; //get float [number of 8x8][8x8] var yarry = aufteilen(yArray); var uarry = aufteilen(uArray); var varry = aufteilen(vArray); //geht beim 40x40 bild 25 for (int y = 0; y < height/8; y ++) { for (int x = 0; x < width/8; x ++) { //DCTDirect for (int i = 0; i < ((height * width) / 64); i++) { yArray = DCT.DCTdirect(yarry[i]); uArray = DCT.DCTdirect(uarry[i]); vArray = DCT.DCTdirect(varry[i]); } //convert float array to byte array byte[,] yArrayB = new byte[width, height]; byte[,] uArrayB = new byte[width, height]; byte[,] vArrayB = new byte[width, height]; for (int i = 0; i < width/8; i++) { for (int j = 0; j < height/8; j++) { yArrayB[i, j] = (byte)yArray[i, j]; uArrayB[i, j] = (byte)uArray[i, j]; vArrayB[i, j] = (byte)vArray[i, j]; } } for (int i = 0; i < 8; i++) { for (int j = 0; j < 8; j++) { yArrayEnde[i * x, j * y] = yArrayB[i, j]; uArrayEnde[i * x, j * y] = uArrayB[i, j]; vArrayEnde[i * x, j *y] = vArrayB[i, j]; } } byte[] yArrayB2 = new byte[64]; byte[] uArrayB2 = new byte[64]; byte[] vArrayB2 = new byte[64]; for (int i = 0; i < 8; i++) { for (int j = 0; j < 8; j++) { yArrayB2[ZigZagTable2[i*j]] = yArrayB[i, j]; uArrayB2[ZigZagTable2[i*j]] = uArrayB[i, j]; vArrayB2[ZigZagTable2[i*j]] = vArrayB[i, j]; } } // Create Huffmantables //yArrayEnde = HuffmanCalc(YDCNodes, YDCValues, yArrayB2); //yArrayEnde = HuffmanCalc(YDCNodes, YACValues, yArrayB2); //uArrayEnde = HuffmanCalc(CbDCNodes, CbDCValues, uArrayB2); //uArrayEnde = HuffmanCalc(CbACNodes, CbACValues, uArrayB2); //vArrayEnde = HuffmanCalc(CbDCNodes, CbDCValues, vArrayB2); //vArrayEnde = HuffmanCalc(CbACNodes, CbACValues, vArrayB2); } } //create JPG head PictureHead.CreateJPGHead(bs, (ushort)height, (ushort)width); //TODO: DCT for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { bs.AddByte((byte)yArrayEnde[x, y]); bs.AddByte((byte)uArrayEnde[x, y]); bs.AddByte((byte)vArrayEnde[x, y]); } } bs.AddShort(0xffd9); //End of Picture Marker bs.WriteToFile(imagedest); }