示例#1
0
        ReturnSampledObject sampleLocation(KinectDepthData data, short[] depthImage, int index, Vector l1, Vector3D p,
                                           int rMin, int height, int cMin, int width)
        {
            int  retries = 0;
            bool valid   = false;

            //initialize MAX RETRIES
            while ((!valid) && retries <= MAXRETRIES)
            {
                Random rndm = new Random();
                l1.Y  = rMin + rndm.Next() % height;
                l1.X  = cMin + rndm.Next() % width;
                index = (int)l1.Y * data.getWidth() + (int)l1.X;
                if (index > 0)
                {
                    valid = data.isValidDepthValue(index, depthImage);
                }
                retries++;
                numSampleLocations++;
            }

            if (valid)
            {
                Vector3D v3D = data.depthPixelTo3d(index, depthImage);
                p = new Vector3D(v3D.X, v3D.Y, v3D.Z);
            }
            ReturnSampledObject rsmo = new ReturnSampledObject(l1, p, index, valid);

            return(rsmo);
        }
示例#2
0
        public List <Vector3D> GenerateSampledPointCloud(KinectDepthData data, short[] depthData, List <Vector3D> pointCloud, int numPoints)
        {
            int      ind = 0;
            Vector   v   = new Vector();
            Vector3D p   = new Vector3D();

            for (int i = 0; i < numPoints; i++)
            {
                ReturnSampledObject object1 = sampleLocation(data, depthData, ind, v, p, 0, data.height - 1, 0, data.width - 1);
                if (object1.valid)
                {
                    pointCloud.Add(object1.p);
                }
            }
            return(pointCloud);
        }
示例#3
0
        public void GenerateFilteredPointCloud(short[] depthImage, List <Vector3D> filteredPointCloud,
                                               List <Vector> pixelLocs, List <Vector3D> pointCloudNormals, List <Vector3D> outlierCloud, KinectDepthData data)
        {
            filteredPointCloud.Clear();
            pixelLocs.Clear();
            pointCloudNormals.Clear();
            outlierCloud.Clear();

            double minInliers  = this.numLocalSamples;
            double maxOutliers = (1 - this.minInlierFraction) * this.numLocalSamples;
            double planeSizeH  = 0.5 * this.planeSize;
            double PlanseSize  = this.planeSize;
            double w2          = data.width - this.planeSize;
            double h2          = data.height - this.planeSize;

            int numPlanes = 0;
            int numPoints = 0;

            int ind1 = 0, ind2 = 0, ind3 = 0;

            // Call the math.tan function
            double sampleRadiusHFactor = this.worldPlaneSize * data.width / (4.0 * Math.Tan(data.fieldOfViewHorizontal));
            double sampleRadiusVFactor = this.worldPlaneSize * data.height / (4.0 * Math.Tan(data.fieldOfViewVertical));

            Vector3D p1, p2, p3, p;
            Vector   l1, l2, l3, l;

            p1 = new Vector3D();
            p2 = new Vector3D();
            p3 = new Vector3D();
            p  = new Vector3D();

            l1 = new Vector();
            l2 = new Vector();
            l3 = new Vector();
            l  = new Vector();

            List <Vector3D> neighborhoodInliers = new List <Vector3D>();
            List <Vector>   neighborhoodPixelLocs = new List <Vector>();

            double d;
            double sampleRadiusH, sampleRadiusV, rMin, rMax, cMin, cMax, dR, dC;

            // numSamples not present
            for (int i = 0; numPoints < this.maxPoints && i < this.numSamples; i++)
            {
                ReturnSampledObject object1 = sampleLocation(data, depthImage, ind1, l1, p1, (int)planeSizeH, (int)h2, (int)planeSizeH, (int)w2);
                if (!object1.valid)
                {
                    continue;
                }
                ReturnSampledObject object2 = sampleLocation(data, depthImage, ind2, l2, p2, (int)(object1.l.Y - planeSizeH),
                                                             planeSize, (int)(object1.l.X - planeSizeH), planeSize);
                if (!object2.valid)
                {
                    continue;
                }
                ReturnSampledObject object3 = sampleLocation(data, depthImage, ind3, l3, p3, (int)(object1.l.Y - planeSizeH),
                                                             planeSize, (int)(object1.l.X - planeSizeH), planeSize);
                if (!object3.valid)
                {
                    continue;
                }
                p1 = object1.p;
                p2 = object2.p;
                p3 = object3.p;
                Vector3D n = Vector3D.CrossProduct((p1 - p2), (p3 - p2));

                d = Vector3D.DotProduct(p1, n);

                double meanDepth = (p1.X + p2.X + p3.X) * 0.33333333;

                sampleRadiusH = Math.Ceiling(sampleRadiusHFactor / meanDepth * Math.Sqrt(1.0 - (n.Y * n.Y)));
                sampleRadiusV = Math.Ceiling(sampleRadiusVFactor / meanDepth * Math.Sqrt(1.0 - (n.Z * n.Z)));
                rMin          = Math.Max(0, l1.Y - sampleRadiusV);
                rMax          = Math.Min(data.height - 1, l1.Y + sampleRadiusV);
                cMin          = Math.Max(0, l1.X - sampleRadiusH);
                cMax          = Math.Min(data.width - 1, l1.X + sampleRadiusH);
                dR            = rMax - rMin;
                dC            = cMax - cMin;

                if (sampleRadiusH < 2.0 && sampleRadiusV < 2.0)
                {
                    continue;
                }

                int inliers = 0, outliers = 0;
                neighborhoodInliers.Clear();
                neighborhoodPixelLocs.Clear();
                for (int j = 0; outliers < maxOutliers && j < this.numLocalSamples; j++)
                {
                    int r, c, ind = 0;
                    ReturnSampledObject object4 = sampleLocation(data, depthImage, ind, l, p, (int)rMin, (int)dR, (int)cMin, (int)dC);
                    if (!object4.valid)
                    {
                        continue;
                    }

                    double err = Math.Abs(Vector3D.DotProduct(n, object4.p) - d);

                    if (err < maxError && (p.X < meanDepth + maxDepthDiff) && (p.X > meanDepth - maxDepthDiff))
                    {
                        inliers++;
                        neighborhoodInliers.Add(new Vector3D(p.X, p.Y, p.Z));
                        neighborhoodPixelLocs.Add(new Vector(l.X, l.Y));
                    }
                    else
                    {
                        outliers++;
                    }
                }

                if (inliers >= minInliers && inliers > 3)
                {
                    Vector3D ng = n;


                    //ng.w = 0;

                    for (int k = 0; k < neighborhoodInliers.Count; k++)
                    {
                        filteredPointCloud.Add(neighborhoodInliers.ElementAt(i));
                        pointCloudNormals.Add(ng);
                        pixelLocs.Add(neighborhoodPixelLocs.ElementAt(i));
                    }

                    filteredPointCloud.Add(new Vector3D(p1.X, p1.Y, p1.Z));
                    filteredPointCloud.Add(new Vector3D(p2.X, p2.Y, p2.Z));
                    filteredPointCloud.Add(new Vector3D(p3.X, p2.Y, p3.Z));

                    pointCloudNormals.Add(ng);
                    pointCloudNormals.Add(ng);
                    pointCloudNormals.Add(ng);

                    pixelLocs.Add(new Vector(l1.X, l1.Y));
                    pixelLocs.Add(new Vector(l2.X, l2.Y));
                    pixelLocs.Add(new Vector(l3.X, l3.Y));

                    numPoints += neighborhoodInliers.Count + 3;
                    numPlanes += 1;
                }
                else
                {
                    for (int j = 0; j < neighborhoodInliers.Count; j++)
                    {
                        outlierCloud.Add(neighborhoodInliers.ElementAt(i));
                    }

                    outlierCloud.Add(p1);
                    outlierCloud.Add(p2);
                    outlierCloud.Add(p3);
                }
            }
        }
        private void button_Click(object sender, RoutedEventArgs e)
        {
            DirectionalLight dirLight = new DirectionalLight();
            dirLight.Color = Colors.White;
            dirLight.Direction = new Vector3D(1, 1, 1);

            PerspectiveCamera camera1 = new PerspectiveCamera();
            camera1.FarPlaneDistance = 10000;
            camera1.NearPlaneDistance = 100;
            camera1.FieldOfView = 10;
            camera1.Position = new Point3D(160, 120, -1000);
            camera1.LookDirection = new Vector3D(0, 0, 1);
            camera1.UpDirection = new Vector3D(0, -1, 0);

            Model3DGroup group = new Model3DGroup();

            int i = 0;

            for (int y = 0; y < 480; y += s)
            {
                for (int x = 0; x < 640; x += s)
                {
                    points[i] = triangle(x, y, s);
                    points[i].Transform = new TranslateTransform3D(0, 0, 0);

                    group.Children.Add(points[i]);
                    i++;
                }
            }

            group.Children.Add(dirLight);
            ModelVisual3D modelsVisual = new ModelVisual3D();
            modelsVisual.Content = group;
            Viewport3D myViewport = new Viewport3D();
            myViewport.IsHitTestVisible = false;
            myViewport.Camera = camera1;
            myViewport.Children.Add(modelsVisual);
            canvas1.Children.Add(myViewport);

            myViewport.Height = canvas1.Height;
            myViewport.Width = canvas1.Width;
            Canvas.SetTop(myViewport, 0);
            Canvas.SetLeft(myViewport, 0);

            foreach (var potentialSensor in KinectSensor.KinectSensors)
            {
                if (potentialSensor.Status == KinectStatus.Connected)
                {
                    this.sensor = potentialSensor;
                    break;
                }
            }

            if (this.sensor != null)
            {
                this.sensor.DepthStream.Enable(DepthImageFormat.Resolution640x480Fps30);
                this.sensor.DepthFrameReady += this.SensorDepthFrameReady;
                try
                {
                    this.sensor.Start();
                }
                catch (IOException)
                {
                    this.sensor = null;
                }
            }

            int minDepth = this.minDepth;
            int maxDepth = this.maxDepth;
            KinectDepthData depthData = new KinectDepthData();
            List<Vector3D> filteredPointCloud = new List<Vector3D>();
            List<Vector> pixelLocs = new List<Vector>();
            List<Vector3D> pointCloudNormals = new List<Vector3D>();
            List<Vector3D> outlierCloud = new List<Vector3D>();
            PlaneFilter filter = new PlaneFilter();
            //pointCloudNormals = filter.GenerateSampledPointCloud(depthData, this.pixelData, pointCloudNormals, 200000);
            Point3DCollection collection = new Point3DCollection();
            foreach (Vector3D v in pointCloudNormals)
            {
                collection.Add(new Point3D(v.X, v.Y, v.Z));
            }

            //filter.GenerateFilteredPointCloud(pixelData, filteredPointCloud, pixelLocs, pointCloudNormals, outlierCloud, depthData);
        }
        private void button_Click(object sender, RoutedEventArgs e)
        {
            DirectionalLight dirLight = new DirectionalLight();

            dirLight.Color     = Colors.White;
            dirLight.Direction = new Vector3D(1, 1, 1);

            PerspectiveCamera camera1 = new PerspectiveCamera();

            camera1.FarPlaneDistance  = 10000;
            camera1.NearPlaneDistance = 100;
            camera1.FieldOfView       = 10;
            camera1.Position          = new Point3D(160, 120, -1000);
            camera1.LookDirection     = new Vector3D(0, 0, 1);
            camera1.UpDirection       = new Vector3D(0, -1, 0);


            Model3DGroup group = new Model3DGroup();

            int i = 0;

            for (int y = 0; y < 480; y += s)
            {
                for (int x = 0; x < 640; x += s)
                {
                    points[i]           = triangle(x, y, s);
                    points[i].Transform = new TranslateTransform3D(0, 0, 0);

                    group.Children.Add(points[i]);
                    i++;
                }
            }

            group.Children.Add(dirLight);
            ModelVisual3D modelsVisual = new ModelVisual3D();

            modelsVisual.Content = group;
            Viewport3D myViewport = new Viewport3D();

            myViewport.IsHitTestVisible = false;
            myViewport.Camera           = camera1;
            myViewport.Children.Add(modelsVisual);
            canvas1.Children.Add(myViewport);

            myViewport.Height = canvas1.Height;
            myViewport.Width  = canvas1.Width;
            Canvas.SetTop(myViewport, 0);
            Canvas.SetLeft(myViewport, 0);

            foreach (var potentialSensor in KinectSensor.KinectSensors)
            {
                if (potentialSensor.Status == KinectStatus.Connected)
                {
                    this.sensor = potentialSensor;
                    break;
                }
            }

            if (this.sensor != null)
            {
                this.sensor.DepthStream.Enable(DepthImageFormat.Resolution640x480Fps30);
                this.sensor.DepthFrameReady += this.SensorDepthFrameReady;
                try
                {
                    this.sensor.Start();
                }
                catch (IOException)
                {
                    this.sensor = null;
                }
            }

            int             minDepth           = this.minDepth;
            int             maxDepth           = this.maxDepth;
            KinectDepthData depthData          = new KinectDepthData();
            List <Vector3D> filteredPointCloud = new List <Vector3D>();
            List <Vector>   pixelLocs          = new List <Vector>();
            List <Vector3D> pointCloudNormals  = new List <Vector3D>();
            List <Vector3D> outlierCloud       = new List <Vector3D>();
            PlaneFilter     filter             = new PlaneFilter();
            //pointCloudNormals = filter.GenerateSampledPointCloud(depthData, this.pixelData, pointCloudNormals, 200000);
            Point3DCollection collection = new Point3DCollection();

            foreach (Vector3D v in pointCloudNormals)
            {
                collection.Add(new Point3D(v.X, v.Y, v.Z));
            }

            //filter.GenerateFilteredPointCloud(pixelData, filteredPointCloud, pixelLocs, pointCloudNormals, outlierCloud, depthData);
        }
示例#6
0
        public void GenerateFilteredPointCloud(short[] depthImage, List<Vector3D> filteredPointCloud,
            List<Vector> pixelLocs, List<Vector3D> pointCloudNormals, List<Vector3D> outlierCloud, KinectDepthData data)
        {
            filteredPointCloud.Clear();
            pixelLocs.Clear();
            pointCloudNormals.Clear();
            outlierCloud.Clear();

            double minInliers = this.numLocalSamples;
            double maxOutliers = (1 - this.minInlierFraction) * this.numLocalSamples;
            double planeSizeH = 0.5 * this.planeSize;
            double PlanseSize = this.planeSize;
            double w2 = data.width - this.planeSize;
            double h2 = data.height - this.planeSize;

            int numPlanes = 0;
            int numPoints = 0;

            int ind1 = 0, ind2 = 0, ind3 = 0;

            // Call the math.tan function
            double sampleRadiusHFactor = this.worldPlaneSize * data.width / (4.0 * Math.Tan(data.fieldOfViewHorizontal));
            double sampleRadiusVFactor = this.worldPlaneSize * data.height / (4.0 * Math.Tan(data.fieldOfViewVertical));

            Vector3D p1, p2, p3, p;
            Vector l1, l2, l3, l;

            p1 = new Vector3D();
            p2 = new Vector3D();
            p3 = new Vector3D();
            p = new Vector3D();

            l1 = new Vector();
            l2 = new Vector();
            l3 = new Vector();
            l = new Vector();

            List<Vector3D> neighborhoodInliers = new List<Vector3D>();
            List<Vector> neighborhoodPixelLocs = new List<Vector>();

            double d;
            double sampleRadiusH, sampleRadiusV, rMin, rMax, cMin, cMax, dR, dC;

            // numSamples not present
            for (int i = 0; numPoints < this.maxPoints && i < this.numSamples; i++)
            {
                ReturnSampledObject object1 = sampleLocation(data, depthImage, ind1, l1, p1, (int)planeSizeH, (int)h2, (int)planeSizeH, (int)w2);
                if (!object1.valid)
                    continue;
                ReturnSampledObject object2 = sampleLocation(data, depthImage, ind2, l2, p2, (int)(object1.l.Y - planeSizeH),
                    planeSize, (int)(object1.l.X - planeSizeH), planeSize);
                if (!object2.valid)
                    continue;
                ReturnSampledObject object3 = sampleLocation(data, depthImage, ind3, l3, p3, (int)(object1.l.Y - planeSizeH),
                    planeSize, (int)(object1.l.X - planeSizeH), planeSize);
                if (!object3.valid)
                    continue;
                p1 = object1.p;
                p2 = object2.p;
                p3 = object3.p;
                Vector3D n = Vector3D.CrossProduct((p1 - p2), (p3 - p2));

                d = Vector3D.DotProduct(p1, n);

                double meanDepth = (p1.X + p2.X + p3.X) * 0.33333333;

                sampleRadiusH = Math.Ceiling(sampleRadiusHFactor / meanDepth * Math.Sqrt(1.0 - (n.Y * n.Y)));
                sampleRadiusV = Math.Ceiling(sampleRadiusVFactor / meanDepth * Math.Sqrt(1.0 - (n.Z * n.Z)));
                rMin = Math.Max(0, l1.Y - sampleRadiusV);
                rMax = Math.Min(data.height - 1, l1.Y + sampleRadiusV);
                cMin = Math.Max(0, l1.X - sampleRadiusH);
                cMax = Math.Min(data.width - 1, l1.X + sampleRadiusH);
                dR = rMax - rMin;
                dC = cMax - cMin;

                if (sampleRadiusH < 2.0 && sampleRadiusV < 2.0)
                {
                    continue;
                }

                int inliers = 0, outliers = 0;
                neighborhoodInliers.Clear();
                neighborhoodPixelLocs.Clear();
                for (int j = 0; outliers < maxOutliers && j < this.numLocalSamples; j++)
                {

                    int r, c, ind = 0;
                    ReturnSampledObject object4 = sampleLocation(data, depthImage, ind, l, p, (int)rMin, (int)dR, (int)cMin, (int)dC);
                    if (!object4.valid)
                        continue;

                    double err = Math.Abs(Vector3D.DotProduct(n, object4.p) - d);

                    if (err < maxError && (p.X < meanDepth + maxDepthDiff) && (p.X > meanDepth - maxDepthDiff))
                    {
                        inliers++;
                        neighborhoodInliers.Add(new Vector3D(p.X, p.Y, p.Z));
                        neighborhoodPixelLocs.Add(new Vector(l.X, l.Y));
                    }
                    else
                    {
                        outliers++;
                    }
                }

                if (inliers >= minInliers && inliers > 3)
                {

                    Vector3D ng = n;

                    //ng.w = 0;

                    for (int k = 0; k < neighborhoodInliers.Count; k++)
                    {
                        filteredPointCloud.Add(neighborhoodInliers.ElementAt(i));
                        pointCloudNormals.Add(ng);
                        pixelLocs.Add(neighborhoodPixelLocs.ElementAt(i));
                    }

                    filteredPointCloud.Add(new Vector3D(p1.X, p1.Y, p1.Z));
                    filteredPointCloud.Add(new Vector3D(p2.X, p2.Y, p2.Z));
                    filteredPointCloud.Add(new Vector3D(p3.X, p2.Y, p3.Z));

                    pointCloudNormals.Add(ng);
                    pointCloudNormals.Add(ng);
                    pointCloudNormals.Add(ng);

                    pixelLocs.Add(new Vector(l1.X, l1.Y));
                    pixelLocs.Add(new Vector(l2.X, l2.Y));
                    pixelLocs.Add(new Vector(l3.X, l3.Y));

                    numPoints += neighborhoodInliers.Count + 3;
                    numPlanes += 1;
                }
                else
                {

                    for (int j = 0; j < neighborhoodInliers.Count; j++)
                    {
                        outlierCloud.Add(neighborhoodInliers.ElementAt(i));
                    }

                    outlierCloud.Add(p1);
                    outlierCloud.Add(p2);
                    outlierCloud.Add(p3);
                }
            }
        }
示例#7
0
        ReturnSampledObject sampleLocation(KinectDepthData data, short[] depthImage, int index, Vector l1, Vector3D p,
          int rMin, int height, int cMin, int width)
        {
            int retries = 0;
            bool valid = false;

            //initialize MAX RETRIES
            while ((!valid) && retries <= MAXRETRIES)
            {
                Random rndm = new Random();
                l1.Y = rMin + rndm.Next() % height;
                l1.X = cMin + rndm.Next() % width;
                index = (int)l1.Y * data.getWidth() + (int)l1.X;
                if(index > 0)
                    valid = data.isValidDepthValue(index, depthImage);
                retries++;
                numSampleLocations++;
            }

            if (valid)
            {
                Vector3D v3D = data.depthPixelTo3d(index, depthImage);
                p = new Vector3D(v3D.X, v3D.Y, v3D.Z);
            }
            ReturnSampledObject rsmo = new ReturnSampledObject(l1, p, index, valid);
            return rsmo;
        }
示例#8
0
 public List<Vector3D> GenerateSampledPointCloud(KinectDepthData data, short[] depthData, List<Vector3D> pointCloud, int numPoints)
 {
     int ind=0;
     Vector v = new Vector();
     Vector3D p = new Vector3D();
     for(int i = 0; i < numPoints; i++)
     {
         ReturnSampledObject object1 = sampleLocation(data, depthData, ind, v, p, 0, data.height - 1, 0, data.width - 1);
         if (object1.valid)
         {
             pointCloud.Add(object1.p);
         }
     }
     return pointCloud;
 }