示例#1
0
文件: NN.cs 项目: qdm097/DigitRecog
        /// <summary>
        /// Forward propagation of values
        /// </summary>
        /// <param name="image">The matrix (image) to be forward propagated from</param>
        public void Calculate(double[,] image)
        {
            //Reset ZVals (raw values untouched by the activation function), vals, and momentums
            InputZVals  = new double[InputCount]; InputValues = new double[InputCount];
            HiddenZVals = new double[HiddenDepth, HiddenCount]; HiddenValues = new double[HiddenDepth, HiddenCount];
            OutputZVals = new double[OutputCount]; OutputValues = new double[OutputCount];

            //Random r = new Random();
            //Random is used for dropout of neurons, but said feature is currently disabled for efficiency reasons

            //Input
            for (int k = 0; k < InputCount; k++)
            {
                for (int j = 0; j < (Resolution * Resolution); j++)
                {
                    InputZVals[k] += ((InputWeights[k, j] + InputWeightMomentum[k, j]) * image[j / Resolution, j - ((j / Resolution) * Resolution)]) + InputBiases[k];
                }
                InputValues[k] = ActivationFunctions.Tanh(InputZVals[k]);
            }
            //Hidden
            for (int l = 0; l < HiddenDepth; l++)
            {
                for (int k = 0; k < HiddenCount; k++)
                {
                    if (l == 0)
                    {
                        for (int j = 0; j < InputCount; j++)
                        {
                            //Former dropout code, if desired must be added to input and output as well
                            //if (l == Depth - 2) { dropout = (r.NextDouble() <= DropoutRate ? 0 : 1); } else { dropout = 1; }
                            HiddenZVals[l, k] += (((FirstHiddenWeights[k, j] + FirstHiddenWeightMomentum[k, j]) * InputValues[j]) + HiddenBiases[l, k]);
                        }
                    }
                    else
                    {
                        for (int j = 0; j < HiddenCount; j++)
                        {
                            //Former dropout code, if desired must be added to input and output as well
                            //if (l == Depth - 2) { dropout = (r.NextDouble() <= DropoutRate ? 0 : 1); } else { dropout = 1; }
                            //Hiddenweights and momentum use l - 1 because the first layer is under firsthidden and firstmomentum respectively
                            HiddenZVals[l, k] += (((HiddenWeights[l - 1, k, j] + HiddenWeightMomentum[l - 1, k, j]) * HiddenValues[l - 1, j]) + HiddenBiases[l, k]);
                        }
                    }
                    HiddenValues[l, k] = ActivationFunctions.Tanh(HiddenZVals[l, k]);
                }
            }
            //Output
            for (int k = 0; k < OutputCount; k++)
            {
                for (int j = 0; j < HiddenCount; j++)
                {
                    OutputZVals[k] += ((OutputWeights[k, j] + OutputWeightMomentum[k, j]) * HiddenValues[HiddenDepth - 1, j]);
                }
                //No activation function on outputs
                OutputValues[k] = OutputZVals[k];
                //OutputValues[k] = ActivationFunctions.Tanh(OutputZVals[k]);
            }
        }
示例#2
0
文件: NN.cs 项目: qdm097/DigitRecog
 //Stochastic descent (all code below is done according to formulas)
 //This adds each NN's gradients to the avg
 public void Descend()
 {
     //Input
     for (int i = 0; i < InputCount; i++)
     {
         for (int ii = 0; ii < Resolution * Resolution; ii++)
         {
             //Nesterov momentum
             InputWeightMomentum[i, ii]     = (InputWeightMomentum[i, ii] * Momentum) - (LearningRate * InputWeightGradient[i, ii]);
             AvgInputWeightGradient[i, ii] += InputWeightGradient[i, ii] + InputWeightMomentum[i, ii];
         }
         double tempbias = InputErrorSignals[i] * ActivationFunctions.TanhDerriv(InputZVals[i]);
         InputBiasMomentum[i]     = (InputBiasMomentum[i] * Momentum) - (LearningRate * tempbias);
         AvgInputBiasGradient[i] += tempbias + InputBiasMomentum[i];
     }
     //Hidden
     for (int i = 0; i < HiddenDepth; i++)
     {
         for (int ii = 0; ii < HiddenCount; ii++)
         {
             if (i == 0)
             {
                 for (int iii = 0; iii < InputCount; iii++)
                 {
                     //Nesterov momentum
                     FirstHiddenWeightMomentum[ii, iii]     = (FirstHiddenWeightMomentum[ii, iii] * Momentum) - (LearningRate * FirstHiddenWeightGradient[ii, iii]);
                     AvgFirstHiddenWeightGradient[ii, iii] += FirstHiddenWeightGradient[ii, iii] + FirstHiddenWeightMomentum[ii, iii];
                 }
             }
             else
             {
                 for (int iii = 0; iii < HiddenCount; iii++)
                 {
                     //Nesterov momentum
                     HiddenWeightMomentum[i - 1, ii, iii]     = (HiddenWeightMomentum[i - 1, ii, iii] * Momentum) - (LearningRate * HiddenWeightGradient[i - 1, ii, iii]);
                     AvgHiddenWeightGradient[i - 1, ii, iii] += HiddenWeightGradient[i - 1, ii, iii] + HiddenWeightMomentum[i - 1, ii, iii];
                 }
             }
             double tempbias = HiddenErrorSignals[i, ii] * ActivationFunctions.TanhDerriv(HiddenZVals[i, ii]);
             HiddenBiasMomentum[i, ii]     = (HiddenBiasMomentum[i, ii] * Momentum) - (LearningRate * tempbias);
             AvgHiddenBiasGradient[i, ii] += tempbias + HiddenBiasMomentum[i, ii];
         }
     }
     //Output
     for (int i = 0; i < OutputCount; i++)
     {
         for (int ii = 0; ii < HiddenCount; ii++)
         {
             //Nesterov momentum
             OutputWeightMomentum[i, ii]     = (OutputWeightMomentum[i, ii] * Momentum) - (LearningRate * OutputWeightGradient[i, ii]);
             AvgOutputWeightGradient[i, ii] += OutputWeightGradient[i, ii] + OutputWeightMomentum[i, ii];
         }
     }
 }
示例#3
0
        //Read a matrix from a file offset by two bytes of metadata
        public static double[,] ReadNextImage()
        {
            //Singleton
            if (ImageReaderRunning)
            {
                throw new Exception("Already accessing file");
            }

            //Read image
            FileStream fs = File.OpenRead(ImagePath);

            //Reset parameters and decrement NN hyperparameters upon new epoch (currently disabled)
            if (!(ImageOffset < fs.Length))
            {
                ImageOffset = 16; LabelOffset = 8;
            }
            fs.Position = ImageOffset;
            byte[] b = new byte[Resolution * Resolution];
            try
            {
                fs.Read(b, 0, Resolution * Resolution);
            }
            catch (Exception ex) { Console.WriteLine("Reader exception: " + ex.ToString()); Console.ReadLine(); }
            int[] array = Array.ConvertAll(b, Convert.ToInt32);
            ImageOffset += Resolution * Resolution;
            //Convert to 2d array
            double[,] result = new double[Resolution, Resolution];
            //Convert array to doubles and store in result
            for (int i = 0; i < Resolution; i++)
            {
                for (int ii = 0; ii < Resolution; ii++)
                {
                    result[i, ii] = (double)array[(Resolution * i) + ii];
                }
            }
            //Normalize the result matrix
            ActivationFunctions.Normalize(result, true, Resolution, Resolution);

            fs.Close();
            return(result);
        }
示例#4
0
文件: NN.cs 项目: qdm097/DigitRecog
        /// <summary>
        /// Backpropagation of error (formulas)
        /// </summary>
        /// <param name="image">The matrix (image) to be forward propagated from</param>
        /// <param name="correct">The number shown in the image</param>
        public void Backprop(double[,] image, int correct)
        {
            //Forward propagation of data
            Calculate(image);

            //Reset things about to be calculated
            InputErrorSignals         = new double[InputCount];
            HiddenErrorSignals        = new double[HiddenDepth, HiddenCount];
            OutputErrorSignals        = new double[OutputCount];
            InputWeightGradient       = new double[InputCount, Resolution *Resolution];
            FirstHiddenWeightGradient = new double[HiddenCount, InputCount];
            HiddenWeightGradient      = new double[HiddenDepth - 1, HiddenCount, HiddenCount];
            OutputWeightGradient      = new double[OutputCount, HiddenCount];

            //Output
            //Foreach ending neuron
            for (int k = 0; k < OutputCount; k++)
            {
                double upperlayerderiv = 2d * ((k == correct ? 1d : 0d) - OutputValues[k]);
                OutputErrorSignals[k] = upperlayerderiv;

                //Calculate gradient
                //This works b/c of only 1 hidden layer, will need to be changed if HiddenDepth is modified
                for (int j = 0; j < HiddenCount; j++)
                {
                    OutputWeightGradient[k, j] = HiddenValues[HiddenDepth - 1, j] * ActivationFunctions.TanhDerriv(OutputZVals[k]) * OutputErrorSignals[k];
                }
            }
            //Hidden
            //Foreach layer of hidden 'neurons'
            //Calc errors
            for (int l = HiddenDepth - 1; l >= 0; l--)
            {
                //Hidden upper layer derrivative calculation
                //Foreach starting neuron
                if (l == HiddenDepth - 1)
                {
                    for (int k = 0; k < HiddenCount; k++)
                    {
                        double upperlayerderiv = 0;

                        //Foreach ending neuron
                        for (int j = 0; j < OutputCount; j++)
                        {
                            //Hiddenweights uses l because the formula's l + 1 is l due to a lack of input layer in this array
                            upperlayerderiv += OutputWeights[j, k] * ActivationFunctions.TanhDerriv(OutputZVals[j]) * OutputErrorSignals[j];
                        }
                        HiddenErrorSignals[l, k] = upperlayerderiv;
                    }
                }
                else
                {
                    for (int k = 0; k < HiddenCount; k++)
                    {
                        double upperlayerderiv = 0;
                        //Foreach ending neuron
                        for (int j = 0; j < HiddenCount; j++)
                        {
                            //Hiddenweights uses l instead of l + 1 because firsthiddenweights is a different array
                            upperlayerderiv += HiddenWeights[l, j, k] * ActivationFunctions.TanhDerriv(HiddenZVals[l + 1, j]) * HiddenErrorSignals[l + 1, j];
                        }
                        HiddenErrorSignals[l, k] = upperlayerderiv;
                    }
                }
            }
            //Calc values
            for (int l = 0; l < HiddenDepth; l++)
            {
                //Foreach starting neuron
                for (int k = 0; k < HiddenCount; k++)
                {
                    if (l == 0)
                    {
                        //Foreach ending neuron neuron
                        for (int j = 0; j < InputCount; j++)
                        {
                            FirstHiddenWeightGradient[k, j] = InputValues[j] * ActivationFunctions.TanhDerriv(HiddenZVals[l, k]) * HiddenErrorSignals[l, k];
                        }
                    }
                    else
                    {
                        //Foreach ending neuron neuron
                        for (int j = 0; j < HiddenCount; j++)
                        {
                            HiddenWeightGradient[l - 1, k, j] = HiddenValues[l - 1, j] * ActivationFunctions.TanhDerriv(HiddenZVals[l, k]) * HiddenErrorSignals[l, k];
                        }
                    }
                }
            }
            //Input
            //Foreach starting neuron
            for (int k = 0; k < InputCount; k++)
            {
                double upperlayerderiv = 0;

                //Calculate error signal
                //Foreach ending neuron
                for (int j = 0; j < HiddenCount; j++)
                {
                    upperlayerderiv += FirstHiddenWeights[j, k] * ActivationFunctions.TanhDerriv(HiddenZVals[0, j]) * HiddenErrorSignals[0, j];
                }
                InputErrorSignals[k] = upperlayerderiv;

                //Calculate gradient
                for (int j = 0; j < Resolution * Resolution; j++)
                {
                    InputWeightGradient[k, j] = image[j / Resolution, j - ((j / Resolution) * Resolution)] * ActivationFunctions.TanhDerriv(InputZVals[k]) * InputErrorSignals[k];
                }
            }
            //Normalize gradients (currently disabled as is obvious)

            /*
             * InputWeightGradient = ActivationFunctions.Normalize(InputWeightGradient, InputCount, Resolution * Resolution);
             * HiddenWeightGradient = ActivationFunctions.Normalize(HiddenWeightGradient, HiddenDepth, HiddenCount, InputCount);
             * OutputWeightGradient = ActivationFunctions.Normalize(OutputWeightGradient, OutputCount, HiddenCount);
             * //Normalize error signals (biases)
             * HiddenErrorSignals = ActivationFunctions.Normalize(HiddenErrorSignals, HiddenDepth, HiddenCount);
             * InputErrorSignals = ActivationFunctions.Normalize(InputErrorSignals);
             */
        }