public void AddFlowRespectsMinimumCapacityInPath() { Vertex c = new Vertex(); Edge f = Edge.AddEdge(b,c,1000d,1000d); a.AddFlowTo(c); Assert.AreEqual(f.ResidualCapacity(b),999d); }
public void CanMakeNontrivialCut() { Vertex vert1 = new Vertex(); Vertex vert2 = new Vertex(); Vertex vert3 = new Vertex(); Vertex vert4 = new Vertex(); Vertex vert5 = new Vertex(); Vertex vert6 = new Vertex(); /* o:o-o6 * |\: * o-o-o * 1 * Where : is a weak edge */ Edge.AddEdge(vert1,vert2,1d,1d); Edge.AddEdge(vert2,vert3,1d,1d); Edge.AddEdge(vert2,vert4,1d,1d); Edge.AddEdge(vert3,vert4,1d,1d); Edge.AddEdge(vert3,vert5,0.1d,0.1d); Edge.AddEdge(vert4,vert5,0.1d,0.1d); Edge.AddEdge(vert5,vert6,1d,1d); while(vert1.AddFlowTo(vert6)); vert1.ResidualCapacityConnectedNodes(); bool all_on_that_should_be = vert1.tagged_as_one && vert2.tagged_as_one && vert3.tagged_as_one && vert4.tagged_as_one; bool all_off_that_should_be = !(vert5.tagged_as_one) && !(vert6.tagged_as_one); Assert.IsTrue(all_off_that_should_be && all_on_that_should_be); }
public static Edge AddEdge(Vertex v1, Vertex v2, double capacity_1_to_2, double capacity_2_to_1) { Edge toReturn = new Edge(v1,v2,capacity_1_to_2,capacity_2_to_1); v1.AddEdge(toReturn); v2.AddEdge(toReturn); return toReturn; }
public Edge(Vertex v1, Vertex v2, double capacity_1_to_2, double capacity_2_to_1) { this.v1 = v1; this.v2 = v2; this.capacity_1_to_2 = capacity_1_to_2; this.capacity_2_to_1 = capacity_2_to_1; this.flow_1_to_2 = 0.0; }
public Vertex Traverse(Vertex origin_vertex) { if (origin_vertex == this.v1) { return this.v2; } else { return this.v1; } }
public double ResidualCapacity(Vertex origin_vertex) { if (origin_vertex == this.v1) { return this.capacity_1_to_2 - this.flow_1_to_2; } else { return this.capacity_2_to_1 + this.flow_1_to_2; } }
/// <summary> /// Modifies the amount of flow currently carried by this edge. /// </summary> /// <param name='origin_vertex'> /// </param> /// <param name='flow'> /// The flow parameter should always be positive here. This is the amount /// of flow we are trying to send across the edge starting from origin_vertex. /// </param> public void AddFlow(Vertex origin_vertex, double flow) { if (flow > this.ResidualCapacity(origin_vertex)) { throw new System.ArgumentException("Parameter exceeds allowable bounds.", "flow"); } if (origin_vertex == this.v1) { this.flow_1_to_2 += flow; } else { this.flow_1_to_2 -= flow; } }
public double AddFlowTo(List<Vertex> traversed, Vertex target, double max_capacity) { if(max_capacity <= 0d) return 0d; if(this == target) return max_capacity; traversed.Add(this); foreach(Edge e in edges) { Vertex eTo = e.Traverse(this); if(traversed.Contains(eTo)) continue; double flow_added = eTo.AddFlowTo(traversed, target, Math.Min(e.ResidualCapacity(this),max_capacity)); if(flow_added > 0d) //If we've added any flow, the path is viable. Travel up the stack actually adding the flow. { e.AddFlow(this,flow_added); return flow_added; } } //If none of the edges returned any flow or were viable, then there is //no path with positive capacity from this vertex to the target through //as yet untraversed nodes. return 0d; }
public void TwoVertexGraph() { a = new Vertex(); b = new Vertex(); e = Edge.AddEdge(a,b,1d,1d); }
public Classification MaximumAPosterioriInfer(ImageData test_input) { Vertex[,] site_nodes = new Vertex[test_input.XSites, test_input.YSites]; for(int i = 0; i < test_input.XSites; i++) for(int j = 0; j < test_input.YSites; j++) { site_nodes[i,j] = new Vertex(); } Vertex source = new Vertex(); Vertex target = new Vertex(); for(int j = 0; j < test_input.YSites; j++) { for(int i = 0; i < test_input.XSites; i++) { Vertex t = site_nodes[i,j]; //Add the edge with capacity lambda_t from the source, or the edge with capacity -lambda_t to the target. //Lambda_t is the log-likelihood ratio: log( p(y | x = 1) / p(y | x = 0) ). //Using Bayes' law, we have //Posterior Odds = P(x = 1 | y)/P(x = 0 | y) = Likelihood Ratio * Prior Odds = (P(y | x = 1) / P(y | x = 0))*(P(x=1)/P(x=0)) = e^(lambda_t)*1 //So lambda_t should be log(Posterior Odds) + log(Prior Odds) = log(P(x=1|y))-log(P(x=0|y)) + possibly 0? //Now, P(x=1|y) is modeled as sigma(w^T * h(y)), so this should be //log(sigma(w^T * h(y))) - log(1-sigma(w^T * h(y))). //However, all these calculations were done at roughly 5:50 AM and I hadn't slept yet, so... //I could totally be wrong. //-Jesse Selover double modeled_prob_of_one = MathWrapper.Sigma(W.DotProduct(Transformer.Transform(test_input[i,j]))); /*double prob_one = ((double)Ons_seen)/((double) Sites_seen); double prob_zero = 1d - prob_one; double lambda = MathWrapper.Log(modeled_prob_of_one) - MathWrapper.Log (1 - modeled_prob_of_one) + MathWrapper.Log (prob_one/prob_zero);*/ Edge.AddEdge(source,t,-MathWrapper.Log(modeled_prob_of_one),0); Edge.AddEdge(t,target,-MathWrapper.Log(1-modeled_prob_of_one),0); Console.WriteLine("Edge to target with strength {0}",-MathWrapper.Log(1-modeled_prob_of_one)); //Add an edge from the source with the modeled probability of 1, and an edge to the target with the modeled probability of 0. //Console.WriteLine(ImageData.GetNewConnections(i,j).Count); foreach(Tuple<int,int> other in test_input.GetNewConnections(i,j)) { Vertex u = site_nodes[other.Item1,other.Item2]; //Add the edge with capacity Beta_{t,u} in both directions between t and u. //DRFS (2006) says that the data dependent smoothing term is max(0,v^T * mu_{i,j}y) DenseVector mu; if(ImageData.IsEarlier(i,j,other.Item1,other.Item2))mu = Crosser.Cross(test_input[i,j],test_input[other.Item1,other.Item2]); else mu = Crosser.Cross(test_input[other.Item1,other.Item2], test_input[i,j]); double capacity = Math.Max(0,V.DotProduct(mu)); Console.WriteLine ("\tInternode edge with strength {0}",capacity); Edge.AddEdge(t,u,capacity,capacity); } } } double flow_added = 0; while(true) { flow_added = source.AddFlowTo(new List<Vertex>(), target, 400000000d); if(flow_added <= 0.0000001d) break; }; //Find the maximum flow source.ResidualCapacityConnectedNodes(); //Find the source end of the minimum cut Label[,] toReturn = new Label[test_input.XSites, test_input.YSites]; for(int i = 0; i < test_input.XSites; i++) for(int j = 0; j < test_input.YSites; j++) { if(site_nodes[i,j].tagged_as_one) toReturn[i,j] = Label.ON; } return new Classification(toReturn); }
public bool AddFlowTo(Vertex target) { return AddFlowTo(new List<Vertex>(),target,30000000d)>0d;//Hack }