public static List <AssociationRule> Mine(ItemsetCollection db, ItemsetCollection L, double confidenceThreshold) { List <AssociationRule> allRules = new List <AssociationRule>(); foreach (Itemset itemset in L) { ItemsetCollection subsets = Bit.FindSubsets(itemset, 0); //get all subsets foreach (Itemset subset in subsets) { double confidence = (db.FindSupport(itemset) / db.FindSupport(subset)) * 100.0; if (confidence >= confidenceThreshold) { AssociationRule rule = new AssociationRule(); rule.X.AddRange(subset); rule.Y.AddRange(itemset.Remove(subset)); rule.Support = db.FindSupport(itemset); rule.Confidence = confidence; if (rule.X.Count > 0 && rule.Y.Count > 0) { allRules.Add(rule); } } } } return(allRules); }
public static ItemsetCollection DoApriori(ItemsetCollection db, double supportThreshold) { Itemset I = db.GetUniqueItems(); ItemsetCollection L = new ItemsetCollection(); //resultant large itemsets ItemsetCollection Li = new ItemsetCollection(); //large itemset in each iteration ItemsetCollection Ci = new ItemsetCollection(); //pruned itemset in each iteration //first iteration (1-item itemsets) foreach (string item in I) { Ci.Add(new Itemset() { item }); } //next iterations int k = 2; while (Ci.Count != 0) { //set Li from Ci (pruning) Li.Clear(); foreach (Itemset itemset in Ci) { itemset.Support = db.FindSupport(itemset); if (itemset.Support >= supportThreshold) { Li.Add(itemset); L.Add(itemset); } } //set Ci for next iteration (find supersets of Li) Ci.Clear(); Ci.AddRange(Bit.FindSubsets(Li.GetUniqueItems(), k)); //get k-item subsets k += 1; } return(L); }