/// <summary> /// </summary> /// <param name="bits"> /// </param> /// <param name="confidence"> /// </param> /// <param name="rand"> /// </param> /// <returns> /// </returns> public static BigInteger genPseudoPrime(int bits, int confidence, Random rand) { BigInteger result = new BigInteger(); bool done = false; while (!done) { result.genRandomBits(bits, rand); result.data[0] |= 0x01; // make it odd // prime test done = result.isProbablePrime(confidence); } return result; }
// *********************************************************************** // Tests the correct implementation of sqrt() method. // *********************************************************************** /// <summary> /// </summary> /// <param name="rounds"> /// </param> public static void SqrtTest(int rounds) { Random rand = new Random(); for (int count = 0; count < rounds; count++) { // generate data of random length int t1 = 0; while (t1 == 0) { t1 = (int)(rand.NextDouble() * 1024); } Console.Write("Round = " + count); BigInteger a = new BigInteger(); a.genRandomBits(t1, rand); BigInteger b = a.sqrt(); BigInteger c = (b + 1) * (b + 1); // check that b is the largest integer such that b*b <= a if (c <= a) { Console.WriteLine("\nError at round " + count); Console.WriteLine(a + "\n"); return; } Console.WriteLine(" <PASSED>."); } }
/// <summary> /// </summary> /// <param name="bits"> /// </param> /// <param name="rand"> /// </param> /// <returns> /// </returns> public BigInteger genCoPrime(int bits, Random rand) { bool done = false; BigInteger result = new BigInteger(); while (!done) { result.genRandomBits(bits, rand); // Console.WriteLine(result.ToString(16)); // gcd test BigInteger g = result.gcd(this); if (g.dataLength == 1 && g.data[0] == 1) { done = true; } } return result; }
// *********************************************************************** // Probabilistic prime test based on Solovay-Strassen (Euler Criterion) // p is probably prime if for any a < p (a is not multiple of p), // a^((p-1)/2) mod p = J(a, p) // where J is the Jacobi symbol. // Otherwise, p is composite. // Returns // ------- // True if "this" is a Euler pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // False if "this" is definitely NOT prime. // *********************************************************************** /// <summary> /// </summary> /// <param name="confidence"> /// </param> /// <returns> /// </returns> public bool SolovayStrassenTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) { // negative thisVal = -this; } else { thisVal = this; } if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) { return false; } else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) { return true; } } if ((thisVal.data[0] & 0x1) == 0) { // even numbers return false; } int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - 1; BigInteger p_sub1_shift = p_sub1 >> 1; Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) { // generate a < n int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) { testBits = (int)(rand.NextDouble() * bits); } a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) { done = true; } } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) { return false; } // calculate a^((p-1)/2) mod p BigInteger expResult = a.modPow(p_sub1_shift, thisVal); if (expResult == p_sub1) { expResult = -1; } // calculate Jacobi symbol BigInteger jacob = Jacobi(a, thisVal); // Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10)); // Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10)); // if they are different then it is not prime if (expResult != jacob) { return false; } } return true; }
/// <summary> /// </summary> /// <param name="confidence"> /// </param> /// <returns> /// </returns> public bool RabinMillerTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) { // negative thisVal = -this; } else { thisVal = this; } if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) { return false; } else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) { return true; } } if ((thisVal.data[0] & 0x1) == 0) { // even numbers return false; } // calculate values of s and t BigInteger p_sub1 = thisVal - (new BigInteger(1)); int s = 0; for (int index = 0; index < p_sub1.dataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1.data[index] & mask) != 0) { index = p_sub1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) { // generate a < n int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) { testBits = (int)(rand.NextDouble() * bits); } a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) { done = true; } } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) { return false; } BigInteger b = a.modPow(t, thisVal); /* Console.WriteLine("a = " + a.ToString(10)); Console.WriteLine("b = " + b.ToString(10)); Console.WriteLine("t = " + t.ToString(10)); Console.WriteLine("s = " + s); */ bool result = false; if (b.dataLength == 1 && b.data[0] == 1) { // a^t mod p = 1 result = true; } for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 result = true; break; } b = (b * b) % thisVal; } if (result == false) { return false; } } return true; }
/// <summary> /// </summary> /// <param name="confidence"> /// </param> /// <returns> /// </returns> public bool FermatLittleTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) { // negative thisVal = -this; } else { thisVal = this; } if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) { return false; } else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) { return true; } } if ((thisVal.data[0] & 0x1) == 0) { // even numbers return false; } int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - (new BigInteger(1)); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) { // generate a < n int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) { testBits = (int)(rand.NextDouble() * bits); } a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) { done = true; } } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) { return false; } // calculate a^(p-1) mod p BigInteger expResult = a.modPow(p_sub1, thisVal); int resultLen = expResult.dataLength; // is NOT prime is a^(p-1) mod p != 1 if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) { // Console.WriteLine("a = " + a.ToString()); return false; } } return true; }