/// <summary> /// </summary> /// <param name="thisVal"> /// </param> /// <returns> /// </returns> private bool LucasStrongTestHelper(BigInteger thisVal) { // Do the test (selects D based on Selfridge) // Let D be the first element of the sequence // 5, -7, 9, -11, 13, ... for which J(D,n) = -1 // Let P = 1, Q = (1-D) / 4 long D = 5, sign = -1, dCount = 0; bool done = false; while (!done) { int Jresult = Jacobi(D, thisVal); if (Jresult == -1) { done = true; // J(D, this) = 1 } else { if (Jresult == 0 && Math.Abs(D) < thisVal) { // divisor found return false; } if (dCount == 20) { // check for square BigInteger root = thisVal.sqrt(); if (root * root == thisVal) { return false; } } // Console.WriteLine(D); D = (Math.Abs(D) + 2) * sign; sign = -sign; } dCount++; } long Q = (1 - D) >> 2; /* Console.WriteLine("D = " + D); Console.WriteLine("Q = " + Q); Console.WriteLine("(n,D) = " + thisVal.gcd(D)); Console.WriteLine("(n,Q) = " + thisVal.gcd(Q)); Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal)); */ BigInteger p_add1 = thisVal + 1; int s = 0; for (int index = 0; index < p_add1.dataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_add1.data[index] & mask) != 0) { index = p_add1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_add1 >> s; // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant = new BigInteger(); int nLen = thisVal.dataLength << 1; constant.data[nLen] = 0x00000001; constant.dataLength = nLen + 1; constant = constant / thisVal; BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0); bool isPrime = false; if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) || (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) { // u(t) = 0 or V(t) = 0 isPrime = true; } for (int i = 1; i < s; i++) { if (!isPrime) { // doubling of index lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant); lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal; // lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal; if (lucas[1].dataLength == 1 && lucas[1].data[0] == 0) { isPrime = true; } } lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); // Q^k } if (isPrime) { // additional checks for composite numbers // If n is prime and gcd(n, Q) == 1, then // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n BigInteger g = thisVal.gcd(Q); if (g.dataLength == 1 && g.data[0] == 1) { // gcd(this, Q) == 1 if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0) { lucas[2] += thisVal; } BigInteger temp = (Q * Jacobi(Q, thisVal)) % thisVal; if ((temp.data[maxLength - 1] & 0x80000000) != 0) { temp += thisVal; } if (lucas[2] != temp) { isPrime = false; } } } return isPrime; }
/// <summary> /// </summary> /// <param name="bits"> /// </param> /// <param name="rand"> /// </param> /// <returns> /// </returns> public BigInteger genCoPrime(int bits, Random rand) { bool done = false; BigInteger result = new BigInteger(); while (!done) { result.genRandomBits(bits, rand); // Console.WriteLine(result.ToString(16)); // gcd test BigInteger g = result.gcd(this); if (g.dataLength == 1 && g.data[0] == 1) { done = true; } } return result; }
/// <summary> /// </summary> /// <param name="confidence"> /// </param> /// <returns> /// </returns> public bool RabinMillerTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) { // negative thisVal = -this; } else { thisVal = this; } if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) { return false; } else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) { return true; } } if ((thisVal.data[0] & 0x1) == 0) { // even numbers return false; } // calculate values of s and t BigInteger p_sub1 = thisVal - (new BigInteger(1)); int s = 0; for (int index = 0; index < p_sub1.dataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1.data[index] & mask) != 0) { index = p_sub1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) { // generate a < n int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) { testBits = (int)(rand.NextDouble() * bits); } a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) { done = true; } } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) { return false; } BigInteger b = a.modPow(t, thisVal); /* Console.WriteLine("a = " + a.ToString(10)); Console.WriteLine("b = " + b.ToString(10)); Console.WriteLine("t = " + t.ToString(10)); Console.WriteLine("s = " + s); */ bool result = false; if (b.dataLength == 1 && b.data[0] == 1) { // a^t mod p = 1 result = true; } for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 result = true; break; } b = (b * b) % thisVal; } if (result == false) { return false; } } return true; }
// *********************************************************************** // Probabilistic prime test based on Solovay-Strassen (Euler Criterion) // p is probably prime if for any a < p (a is not multiple of p), // a^((p-1)/2) mod p = J(a, p) // where J is the Jacobi symbol. // Otherwise, p is composite. // Returns // ------- // True if "this" is a Euler pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // False if "this" is definitely NOT prime. // *********************************************************************** /// <summary> /// </summary> /// <param name="confidence"> /// </param> /// <returns> /// </returns> public bool SolovayStrassenTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) { // negative thisVal = -this; } else { thisVal = this; } if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) { return false; } else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) { return true; } } if ((thisVal.data[0] & 0x1) == 0) { // even numbers return false; } int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - 1; BigInteger p_sub1_shift = p_sub1 >> 1; Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) { // generate a < n int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) { testBits = (int)(rand.NextDouble() * bits); } a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) { done = true; } } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) { return false; } // calculate a^((p-1)/2) mod p BigInteger expResult = a.modPow(p_sub1_shift, thisVal); if (expResult == p_sub1) { expResult = -1; } // calculate Jacobi symbol BigInteger jacob = Jacobi(a, thisVal); // Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10)); // Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10)); // if they are different then it is not prime if (expResult != jacob) { return false; } } return true; }
/// <summary> /// </summary> /// <param name="confidence"> /// </param> /// <returns> /// </returns> public bool FermatLittleTest(int confidence) { BigInteger thisVal; if ((this.data[maxLength - 1] & 0x80000000) != 0) { // negative thisVal = -this; } else { thisVal = this; } if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) { return false; } else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) { return true; } } if ((thisVal.data[0] & 0x1) == 0) { // even numbers return false; } int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - (new BigInteger(1)); Random rand = new Random(); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) { // generate a < n int testBits = 0; // make sure "a" has at least 2 bits while (testBits < 2) { testBits = (int)(rand.NextDouble() * bits); } a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) { done = true; } } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) { return false; } // calculate a^(p-1) mod p BigInteger expResult = a.modPow(p_sub1, thisVal); int resultLen = expResult.dataLength; // is NOT prime is a^(p-1) mod p != 1 if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) { // Console.WriteLine("a = " + a.ToString()); return false; } } return true; }