示例#1
0
        static void Main(string[] args)
        {
            Spacer[] spacerDecisions = new Spacer[]
            {
                new Spacer(WeatherKind.Sun, 23, WindKind.Normal, true),
                new Spacer(WeatherKind.Rain, 15, WindKind.Strong, false),
                new Spacer(WeatherKind.Clouds, 17, WindKind.Light, true),
                new Spacer(WeatherKind.Clouds, 21, WindKind.Normal, false),
                new Spacer(WeatherKind.Sun, 20, WindKind.Strong, true),
                new Spacer(WeatherKind.Sun, 25, WindKind.Light, true),
                new Spacer(WeatherKind.Rain, 22, WindKind.Light, true),
                new Spacer(WeatherKind.Sun, 14, WindKind.Strong, false),
                new Spacer(WeatherKind.Clouds, 19, WindKind.Strong, false),
                new Spacer(WeatherKind.Rain, 16, WindKind.Light, false),
            };

            Spacer spacerToClassify = new Spacer(WeatherKind.Rain, 24, WindKind.Light, null);

            BayesClassificator bayesClassificator = new BayesClassificator(spacerDecisions, 1);

            (Boolean, Double[])result = bayesClassificator.GetSpacerClassificationAndProbability(spacerToClassify);
        public (Boolean, Double[]) GetSpacerClassificationAndProbability(Spacer spacerToClassify)
        {
            Boolean decision = false;

            decisionClassTruePower = (Double)Decisions.Count(d => d.Decision.Value);
            Double decisionClassTrueProb = decisionClassTruePower / (Double)Decisions.Count();

            decisionClassFalsePower = (Double)Decisions.Count(d => !d.Decision.Value);
            Double decisionClassFalseProb = decisionClassFalsePower / (Double)Decisions.Count();

            Double param1ProbTrue, param2ProbTrue, param3ProbTrue = 0d;
            Double param1ProbFalse, param2ProbFalse, param3ProbFalse = 0d;

            if (Decisions.Count(d => d.Weather == spacerToClassify.Weather && d.Decision.Value) == 0)
            {
                param1ProbTrue = GetCorrectedProbability(typeof(WeatherKind), true);
            }
            else
            {
                param1ProbTrue = (((Double)Decisions.Count(d => d.Weather == spacerToClassify.Weather && d.Decision.Value) / 10d) / (decisionClassTrueProb));
            }

            if (Decisions.Count(d => d.Wind == spacerToClassify.Wind && d.Decision.Value) == 0)
            {
                param2ProbTrue = GetCorrectedProbability(typeof(WindKind), true);
            }
            else
            {
                param2ProbTrue = (((Double)Decisions.Count(d => d.Wind == spacerToClassify.Wind && d.Decision.Value) / 10d) / (decisionClassTrueProb));
            }

            if (Decisions.Count(d => d.Temperature == spacerToClassify.Temperature && d.Decision.Value) == 0)
            {
                param3ProbTrue = GetCorrectedProbability(typeof(TemperatureKind), true);
            }
            else
            {
                param3ProbTrue = (((Double)Decisions.Count(d => d.Temperature == spacerToClassify.Temperature && d.Decision.Value) / 10d) / (decisionClassTrueProb));
            }

            if (Decisions.Count(d => d.Weather == spacerToClassify.Weather && !d.Decision.Value) == 0)
            {
                param1ProbFalse = GetCorrectedProbability(typeof(WeatherKind), false);
            }
            else
            {
                param1ProbFalse = (((Double)Decisions.Count(d => d.Weather == spacerToClassify.Weather && !d.Decision.Value) / 10d) / (decisionClassFalseProb));
            }

            if (Decisions.Count(d => d.Wind == spacerToClassify.Wind && !d.Decision.Value) == 0)
            {
                param2ProbFalse = GetCorrectedProbability(typeof(WindKind), false);
            }
            else
            {
                param2ProbFalse = (((Double)Decisions.Count(d => d.Wind == spacerToClassify.Wind && !d.Decision.Value) / 10d) / (decisionClassFalseProb));
            }

            if (Decisions.Count(d => d.Temperature == spacerToClassify.Temperature && !d.Decision.Value) == 0)
            {
                param3ProbFalse = GetCorrectedProbability(typeof(TemperatureKind), false);
            }
            else
            {
                param3ProbFalse = (((Double)Decisions.Count(d => d.Temperature == spacerToClassify.Temperature && !d.Decision.Value) / 10d) / (decisionClassFalseProb));
            }

            Double finalTrueClassProb  = decisionClassTrueProb * param1ProbTrue * param2ProbTrue * param3ProbTrue;
            Double finalFalseClassProb = decisionClassFalseProb * param1ProbFalse * param2ProbFalse * param3ProbFalse;

            decision = finalTrueClassProb > finalFalseClassProb;

            return(decision, new Double[] { finalTrueClassProb, finalFalseClassProb });